Normalized defining polynomial
\( x^{20} - 2 x^{19} + x^{18} + 5 x^{17} - 62 x^{16} - 118 x^{15} - 74 x^{14} - 121 x^{13} + 174 x^{12} + 1042 x^{11} + 2186 x^{10} + 3878 x^{9} + 4441 x^{8} + 2115 x^{7} + 47 x^{6} + 260 x^{5} - 23 x^{4} - 85 x^{3} + 33 x^{2} - 10 x - 4 \)
Invariants
| Degree: | $20$ | magma: Degree(K);
sage: K.degree()
gp: poldegree(K.pol)
| |
| Signature: | $[6, 7]$ | magma: Signature(K);
sage: K.signature()
gp: K.sign
| |
| Discriminant: | \(-1171522021720880762078857421875=-\,5^{14}\cdot 19^{9}\cdot 29^{6}\) | magma: Discriminant(Integers(K));
sage: K.disc()
gp: K.disc
| |
| Root discriminant: | $31.87$ | magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
sage: (K.disc().abs())^(1./K.degree())
gp: abs(K.disc)^(1/poldegree(K.pol))
| |
| Ramified primes: | $5, 19, 29$ | magma: PrimeDivisors(Discriminant(Integers(K)));
sage: K.disc().support()
gp: factor(abs(K.disc))[,1]~
| |
| This field is not Galois over $\Q$. | |||
| This is not a CM field. | |||
Integral basis (with respect to field generator \(a\))
$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $a^{6}$, $a^{7}$, $a^{8}$, $a^{9}$, $a^{10}$, $a^{11}$, $a^{12}$, $a^{13}$, $a^{14}$, $a^{15}$, $a^{16}$, $a^{17}$, $\frac{1}{6} a^{18} - \frac{1}{2} a^{17} + \frac{1}{3} a^{16} - \frac{1}{2} a^{15} - \frac{1}{2} a^{14} - \frac{1}{6} a^{13} - \frac{1}{6} a^{12} + \frac{1}{3} a^{11} + \frac{1}{3} a^{8} - \frac{1}{2} a^{6} - \frac{1}{6} a^{4} - \frac{1}{2} a^{3} - \frac{1}{6} a - \frac{1}{3}$, $\frac{1}{595587001386916319495251794315438} a^{19} - \frac{21200001463411969527652233359665}{297793500693458159747625897157719} a^{18} - \frac{14699108382752011064121007993555}{595587001386916319495251794315438} a^{17} + \frac{226586047450811780052127998511079}{595587001386916319495251794315438} a^{16} - \frac{24329895135874324590755620797274}{99264500231152719915875299052573} a^{15} - \frac{43128513915114313274868297756920}{297793500693458159747625897157719} a^{14} - \frac{30389183954645148908610420221980}{297793500693458159747625897157719} a^{13} + \frac{224175598577413012568600790037255}{595587001386916319495251794315438} a^{12} - \frac{128243015863167848840052721702982}{297793500693458159747625897157719} a^{11} + \frac{36942465966629011670442638035520}{99264500231152719915875299052573} a^{10} - \frac{87431069587168876532531490506672}{297793500693458159747625897157719} a^{9} + \frac{74235236678990857152206952919372}{297793500693458159747625897157719} a^{8} - \frac{88159994489224282595816618717945}{198529000462305439831750598105146} a^{7} - \frac{63917121801696316603203828055465}{198529000462305439831750598105146} a^{6} - \frac{221243345847763994010043430651593}{595587001386916319495251794315438} a^{5} - \frac{78513985632269638357575145690052}{297793500693458159747625897157719} a^{4} + \frac{8142774407154142615192578054509}{198529000462305439831750598105146} a^{3} - \frac{24355813905656738686503958772683}{595587001386916319495251794315438} a^{2} + \frac{87851491488275770018053892307149}{198529000462305439831750598105146} a + \frac{83625647155943437320247808262635}{297793500693458159747625897157719}$
Class group and class number
Trivial group, which has order $1$ (assuming GRH)
Unit group
| Rank: | $12$ | magma: UnitRank(K);
sage: UK.rank()
gp: K.fu
| |
| Torsion generator: | \( -1 \) (order $2$) | magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
sage: UK.torsion_generator()
gp: K.tu[2]
| |
| Fundamental units: | Units are too long to display, but can be downloaded with other data for this field from 'Stored data to gp' link to the right (assuming GRH) | magma: [K!f(g): g in Generators(UK)];
sage: UK.fundamental_units()
gp: K.fu
| |
| Regulator: | \( 42996373.5338 \) (assuming GRH) | magma: Regulator(K);
sage: K.regulator()
gp: K.reg
|
Galois group
| A solvable group of order 819200 |
| The 275 conjugacy class representatives for t20n955 are not computed |
| Character table for t20n955 is not computed |
Intermediate fields
| \(\Q(\sqrt{5}) \), 10.6.9932496465625.1 |
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Sibling fields
Frobenius cycle types
| $p$ | 2 | 3 | 5 | 7 | 11 | 13 | 17 | 19 | 23 | 29 | 31 | 37 | 41 | 43 | 47 | 53 | 59 |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Cycle type | $16{,}\,{\href{/LocalNumberField/2.2.0.1}{2} }^{2}$ | $16{,}\,{\href{/LocalNumberField/3.2.0.1}{2} }^{2}$ | R | ${\href{/LocalNumberField/7.10.0.1}{10} }^{2}$ | ${\href{/LocalNumberField/11.4.0.1}{4} }^{3}{,}\,{\href{/LocalNumberField/11.2.0.1}{2} }^{3}{,}\,{\href{/LocalNumberField/11.1.0.1}{1} }^{2}$ | ${\href{/LocalNumberField/13.4.0.1}{4} }^{5}$ | ${\href{/LocalNumberField/17.8.0.1}{8} }^{2}{,}\,{\href{/LocalNumberField/17.2.0.1}{2} }^{2}$ | R | ${\href{/LocalNumberField/23.10.0.1}{10} }^{2}$ | R | ${\href{/LocalNumberField/31.10.0.1}{10} }{,}\,{\href{/LocalNumberField/31.8.0.1}{8} }{,}\,{\href{/LocalNumberField/31.2.0.1}{2} }$ | ${\href{/LocalNumberField/37.8.0.1}{8} }^{2}{,}\,{\href{/LocalNumberField/37.4.0.1}{4} }$ | ${\href{/LocalNumberField/41.8.0.1}{8} }{,}\,{\href{/LocalNumberField/41.5.0.1}{5} }^{2}{,}\,{\href{/LocalNumberField/41.1.0.1}{1} }^{2}$ | $16{,}\,{\href{/LocalNumberField/43.4.0.1}{4} }$ | ${\href{/LocalNumberField/47.8.0.1}{8} }^{2}{,}\,{\href{/LocalNumberField/47.2.0.1}{2} }^{2}$ | $20$ | ${\href{/LocalNumberField/59.8.0.1}{8} }^{2}{,}\,{\href{/LocalNumberField/59.2.0.1}{2} }{,}\,{\href{/LocalNumberField/59.1.0.1}{1} }^{2}$ |
In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
| $p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
|---|---|---|---|---|---|---|---|
| 5 | Data not computed | ||||||
| $19$ | 19.2.1.1 | $x^{2} - 19$ | $2$ | $1$ | $1$ | $C_2$ | $[\ ]_{2}$ |
| 19.5.4.1 | $x^{5} - 19$ | $5$ | $1$ | $4$ | $D_{5}$ | $[\ ]_{5}^{2}$ | |
| 19.5.4.1 | $x^{5} - 19$ | $5$ | $1$ | $4$ | $D_{5}$ | $[\ ]_{5}^{2}$ | |
| 19.8.0.1 | $x^{8} - x + 2$ | $1$ | $8$ | $0$ | $C_8$ | $[\ ]^{8}$ | |
| $29$ | 29.2.0.1 | $x^{2} - x + 3$ | $1$ | $2$ | $0$ | $C_2$ | $[\ ]^{2}$ |
| 29.2.0.1 | $x^{2} - x + 3$ | $1$ | $2$ | $0$ | $C_2$ | $[\ ]^{2}$ | |
| 29.4.3.4 | $x^{4} + 232$ | $4$ | $1$ | $3$ | $C_4$ | $[\ ]_{4}$ | |
| 29.4.3.4 | $x^{4} + 232$ | $4$ | $1$ | $3$ | $C_4$ | $[\ ]_{4}$ | |
| 29.8.0.1 | $x^{8} + x^{2} - 3 x + 3$ | $1$ | $8$ | $0$ | $C_8$ | $[\ ]^{8}$ | |