Normalized defining polynomial
\( x^{20} - 4 x^{19} + 12 x^{17} - 14 x^{16} + 52 x^{14} + 268 x^{13} - 1623 x^{12} + 2932 x^{11} - 2132 x^{10} - 176 x^{9} + 1237 x^{8} - 296 x^{7} - 816 x^{6} + 1292 x^{5} - 1575 x^{4} + 1136 x^{3} - 292 x^{2} - 36 x + 17 \)
Invariants
| Degree: | $20$ | magma: Degree(K);
sage: K.degree()
gp: poldegree(K.pol)
| |
| Signature: | $[6, 7]$ | magma: Signature(K);
sage: K.signature()
gp: K.sign
| |
| Discriminant: | \(-10929603344110461118702419968=-\,2^{40}\cdot 1583^{5}\) | magma: Discriminant(Integers(K));
sage: K.disc()
gp: K.disc
| |
| Root discriminant: | $25.23$ | magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
sage: (K.disc().abs())^(1./K.degree())
gp: abs(K.disc)^(1/poldegree(K.pol))
| |
| Ramified primes: | $2, 1583$ | magma: PrimeDivisors(Discriminant(Integers(K)));
sage: K.disc().support()
gp: factor(abs(K.disc))[,1]~
| |
| This field is not Galois over $\Q$. | |||
| This is not a CM field. | |||
Integral basis (with respect to field generator \(a\))
$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $a^{6}$, $a^{7}$, $a^{8}$, $a^{9}$, $a^{10}$, $a^{11}$, $a^{12}$, $a^{13}$, $a^{14}$, $a^{15}$, $a^{16}$, $a^{17}$, $\frac{1}{89} a^{18} - \frac{35}{89} a^{17} - \frac{30}{89} a^{16} + \frac{6}{89} a^{15} - \frac{36}{89} a^{14} + \frac{33}{89} a^{13} + \frac{9}{89} a^{12} + \frac{40}{89} a^{11} + \frac{7}{89} a^{10} + \frac{34}{89} a^{9} - \frac{44}{89} a^{8} + \frac{35}{89} a^{7} - \frac{5}{89} a^{6} - \frac{6}{89} a^{5} - \frac{39}{89} a^{4} + \frac{24}{89} a^{3} - \frac{41}{89} a^{2} + \frac{33}{89} a - \frac{11}{89}$, $\frac{1}{5252805415218916645938340205705} a^{19} + \frac{6121305990133013275223041073}{5252805415218916645938340205705} a^{18} + \frac{671615396207418561224562524566}{5252805415218916645938340205705} a^{17} - \frac{2080132656184157013456419105661}{5252805415218916645938340205705} a^{16} + \frac{2164994665162143855889845674729}{5252805415218916645938340205705} a^{15} - \frac{171469665907442130066689302912}{5252805415218916645938340205705} a^{14} - \frac{1337176780715625394925341525537}{5252805415218916645938340205705} a^{13} + \frac{1567646802653845395539113047094}{5252805415218916645938340205705} a^{12} + \frac{343149763935792843218054312931}{1050561083043783329187668041141} a^{11} + \frac{1897625210385323146401280027427}{5252805415218916645938340205705} a^{10} - \frac{2418803176889412862181403477653}{5252805415218916645938340205705} a^{9} - \frac{2031502387474094376212079854092}{5252805415218916645938340205705} a^{8} + \frac{564358265668170001765047134593}{5252805415218916645938340205705} a^{7} + \frac{396181305857014231045156159640}{1050561083043783329187668041141} a^{6} - \frac{2446162346362036843204336550416}{5252805415218916645938340205705} a^{5} - \frac{86135968075619616497091108986}{1050561083043783329187668041141} a^{4} + \frac{97601028266529877998174313062}{1050561083043783329187668041141} a^{3} - \frac{2118214208934477790146695426314}{5252805415218916645938340205705} a^{2} - \frac{376688260263839122093416312895}{1050561083043783329187668041141} a - \frac{886559915719298485645586622151}{5252805415218916645938340205705}$
Class group and class number
Trivial group, which has order $1$ (assuming GRH)
Unit group
| Rank: | $12$ | magma: UnitRank(K);
sage: UK.rank()
gp: K.fu
| |
| Torsion generator: | \( -1 \) (order $2$) | magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
sage: UK.torsion_generator()
gp: K.tu[2]
| |
| Fundamental units: | Units are too long to display, but can be downloaded with other data for this field from 'Stored data to gp' link to the right (assuming GRH) | magma: [K!f(g): g in Generators(UK)];
sage: UK.fundamental_units()
gp: K.fu
| |
| Regulator: | \( 1784207.36364 \) (assuming GRH) | magma: Regulator(K);
sage: K.regulator()
gp: K.reg
|
Galois group
| A solvable group of order 102400 |
| The 130 conjugacy class representatives for t20n756 are not computed |
| Character table for t20n756 is not computed |
Intermediate fields
| \(\Q(\sqrt{2}) \), 10.6.82112970752.1 |
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Sibling fields
Frobenius cycle types
| $p$ | 2 | 3 | 5 | 7 | 11 | 13 | 17 | 19 | 23 | 29 | 31 | 37 | 41 | 43 | 47 | 53 | 59 |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Cycle type | R | ${\href{/LocalNumberField/3.10.0.1}{10} }^{2}$ | ${\href{/LocalNumberField/5.8.0.1}{8} }{,}\,{\href{/LocalNumberField/5.4.0.1}{4} }^{2}{,}\,{\href{/LocalNumberField/5.2.0.1}{2} }^{2}$ | ${\href{/LocalNumberField/7.10.0.1}{10} }{,}\,{\href{/LocalNumberField/7.4.0.1}{4} }{,}\,{\href{/LocalNumberField/7.2.0.1}{2} }^{3}$ | ${\href{/LocalNumberField/11.10.0.1}{10} }^{2}$ | ${\href{/LocalNumberField/13.10.0.1}{10} }^{2}$ | ${\href{/LocalNumberField/17.4.0.1}{4} }^{2}{,}\,{\href{/LocalNumberField/17.2.0.1}{2} }^{4}{,}\,{\href{/LocalNumberField/17.1.0.1}{1} }^{4}$ | ${\href{/LocalNumberField/19.8.0.1}{8} }{,}\,{\href{/LocalNumberField/19.4.0.1}{4} }^{2}{,}\,{\href{/LocalNumberField/19.2.0.1}{2} }^{2}$ | ${\href{/LocalNumberField/23.10.0.1}{10} }^{2}$ | ${\href{/LocalNumberField/29.4.0.1}{4} }^{5}$ | ${\href{/LocalNumberField/31.10.0.1}{10} }{,}\,{\href{/LocalNumberField/31.2.0.1}{2} }^{4}{,}\,{\href{/LocalNumberField/31.1.0.1}{1} }^{2}$ | ${\href{/LocalNumberField/37.8.0.1}{8} }^{2}{,}\,{\href{/LocalNumberField/37.4.0.1}{4} }$ | ${\href{/LocalNumberField/41.5.0.1}{5} }^{4}$ | ${\href{/LocalNumberField/43.8.0.1}{8} }^{2}{,}\,{\href{/LocalNumberField/43.4.0.1}{4} }$ | ${\href{/LocalNumberField/47.10.0.1}{10} }{,}\,{\href{/LocalNumberField/47.4.0.1}{4} }{,}\,{\href{/LocalNumberField/47.2.0.1}{2} }^{3}$ | ${\href{/LocalNumberField/53.10.0.1}{10} }^{2}$ | ${\href{/LocalNumberField/59.4.0.1}{4} }^{5}$ |
In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
| $p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
|---|---|---|---|---|---|---|---|
| 2 | Data not computed | ||||||
| 1583 | Data not computed | ||||||