Normalized defining polynomial
\( x^{20} - 4 x^{19} + 8 x^{18} - 28 x^{17} + 85 x^{16} - 188 x^{15} + 406 x^{14} - 576 x^{13} + 503 x^{12} - 740 x^{11} + 622 x^{10} + 1240 x^{9} - 3199 x^{8} + 2848 x^{7} - 714 x^{6} - 976 x^{5} + 1314 x^{4} - 832 x^{3} + 322 x^{2} - 76 x + 1 \)
Invariants
| Degree: | $20$ | magma: Degree(K);
sage: K.degree()
gp: poldegree(K.pol)
| |
| Signature: | $[6, 7]$ | magma: Signature(K);
sage: K.signature()
gp: K.sign
| |
| Discriminant: | \(-10929603344110461118702419968=-\,2^{40}\cdot 1583^{5}\) | magma: Discriminant(Integers(K));
sage: K.disc()
gp: K.disc
| |
| Root discriminant: | $25.23$ | magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
sage: (K.disc().abs())^(1./K.degree())
gp: abs(K.disc)^(1/poldegree(K.pol))
| |
| Ramified primes: | $2, 1583$ | magma: PrimeDivisors(Discriminant(Integers(K)));
sage: K.disc().support()
gp: factor(abs(K.disc))[,1]~
| |
| This field is not Galois over $\Q$. | |||
| This is not a CM field. | |||
Integral basis (with respect to field generator \(a\))
$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $a^{6}$, $a^{7}$, $a^{8}$, $a^{9}$, $a^{10}$, $a^{11}$, $a^{12}$, $a^{13}$, $a^{14}$, $a^{15}$, $a^{16}$, $a^{17}$, $a^{18}$, $\frac{1}{4845172236622801054814853793877} a^{19} - \frac{955640147149796120470164953149}{4845172236622801054814853793877} a^{18} - \frac{69895781066886146068262293300}{4845172236622801054814853793877} a^{17} - \frac{199987572357987102596949385119}{4845172236622801054814853793877} a^{16} - \frac{213256222794803501724954638279}{4845172236622801054814853793877} a^{15} - \frac{1623739076548481671556241002626}{4845172236622801054814853793877} a^{14} + \frac{1154742635079413961217202524219}{4845172236622801054814853793877} a^{13} - \frac{567418035972286239675728686472}{4845172236622801054814853793877} a^{12} + \frac{820999376866360696462414040458}{4845172236622801054814853793877} a^{11} + \frac{66816645657378859282219748462}{4845172236622801054814853793877} a^{10} + \frac{777143010972825150381759875015}{4845172236622801054814853793877} a^{9} + \frac{1633875872498569301516494841519}{4845172236622801054814853793877} a^{8} - \frac{678941843303353692974637534263}{4845172236622801054814853793877} a^{7} - \frac{1525936583969112233314658436695}{4845172236622801054814853793877} a^{6} + \frac{553454528922439209321473818905}{4845172236622801054814853793877} a^{5} + \frac{893307189644413011544478802192}{4845172236622801054814853793877} a^{4} - \frac{1072900497644947858234544242203}{4845172236622801054814853793877} a^{3} + \frac{1225998019758954132527427063106}{4845172236622801054814853793877} a^{2} - \frac{5257813856739746228448994730}{32087233355117887780230819827} a + \frac{78112931181201288939938401573}{4845172236622801054814853793877}$
Class group and class number
Trivial group, which has order $1$ (assuming GRH)
Unit group
| Rank: | $12$ | magma: UnitRank(K);
sage: UK.rank()
gp: K.fu
| |
| Torsion generator: | \( -1 \) (order $2$) | magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
sage: UK.torsion_generator()
gp: K.tu[2]
| |
| Fundamental units: | Units are too long to display, but can be downloaded with other data for this field from 'Stored data to gp' link to the right (assuming GRH) | magma: [K!f(g): g in Generators(UK)];
sage: UK.fundamental_units()
gp: K.fu
| |
| Regulator: | \( 1995930.82912 \) (assuming GRH) | magma: Regulator(K);
sage: K.regulator()
gp: K.reg
|
Galois group
| A solvable group of order 102400 |
| The 130 conjugacy class representatives for t20n756 are not computed |
| Character table for t20n756 is not computed |
Intermediate fields
| \(\Q(\sqrt{2}) \), 10.6.82112970752.1 |
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Sibling fields
Frobenius cycle types
| $p$ | 2 | 3 | 5 | 7 | 11 | 13 | 17 | 19 | 23 | 29 | 31 | 37 | 41 | 43 | 47 | 53 | 59 |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Cycle type | R | ${\href{/LocalNumberField/3.10.0.1}{10} }^{2}$ | ${\href{/LocalNumberField/5.4.0.1}{4} }^{5}$ | ${\href{/LocalNumberField/7.10.0.1}{10} }{,}\,{\href{/LocalNumberField/7.4.0.1}{4} }^{2}{,}\,{\href{/LocalNumberField/7.1.0.1}{1} }^{2}$ | ${\href{/LocalNumberField/11.10.0.1}{10} }^{2}$ | ${\href{/LocalNumberField/13.10.0.1}{10} }^{2}$ | ${\href{/LocalNumberField/17.4.0.1}{4} }^{3}{,}\,{\href{/LocalNumberField/17.2.0.1}{2} }^{3}{,}\,{\href{/LocalNumberField/17.1.0.1}{1} }^{2}$ | ${\href{/LocalNumberField/19.8.0.1}{8} }^{2}{,}\,{\href{/LocalNumberField/19.4.0.1}{4} }$ | ${\href{/LocalNumberField/23.10.0.1}{10} }^{2}$ | ${\href{/LocalNumberField/29.8.0.1}{8} }{,}\,{\href{/LocalNumberField/29.4.0.1}{4} }^{2}{,}\,{\href{/LocalNumberField/29.2.0.1}{2} }^{2}$ | ${\href{/LocalNumberField/31.10.0.1}{10} }{,}\,{\href{/LocalNumberField/31.2.0.1}{2} }^{4}{,}\,{\href{/LocalNumberField/31.1.0.1}{1} }^{2}$ | ${\href{/LocalNumberField/37.4.0.1}{4} }^{5}$ | ${\href{/LocalNumberField/41.5.0.1}{5} }^{4}$ | ${\href{/LocalNumberField/43.8.0.1}{8} }^{2}{,}\,{\href{/LocalNumberField/43.4.0.1}{4} }$ | ${\href{/LocalNumberField/47.10.0.1}{10} }{,}\,{\href{/LocalNumberField/47.4.0.1}{4} }^{2}{,}\,{\href{/LocalNumberField/47.1.0.1}{1} }^{2}$ | ${\href{/LocalNumberField/53.10.0.1}{10} }^{2}$ | ${\href{/LocalNumberField/59.8.0.1}{8} }^{2}{,}\,{\href{/LocalNumberField/59.4.0.1}{4} }$ |
In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
| $p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
|---|---|---|---|---|---|---|---|
| 2 | Data not computed | ||||||
| 1583 | Data not computed | ||||||