Normalized defining polynomial
\( x^{20} - 4 x^{19} + 8 x^{18} + 5 x^{17} - 13 x^{16} - 58 x^{15} - 164 x^{14} + 1579 x^{13} - 4695 x^{12} + 6616 x^{11} - 14259 x^{10} + 39740 x^{9} - 41312 x^{8} + 8098 x^{7} - 14078 x^{6} + 27251 x^{5} - 2620 x^{4} - 2820 x^{3} - 2259 x^{2} - 1303 x + 31 \)
Invariants
| Degree: | $20$ | magma: Degree(K);
sage: K.degree()
gp: poldegree(K.pol)
| |
| Signature: | $[6, 7]$ | magma: Signature(K);
sage: K.signature()
gp: K.sign
| |
| Discriminant: | \(-1068583407413817193418066406250000=-\,2^{4}\cdot 5^{14}\cdot 19^{4}\cdot 29^{6}\cdot 109^{4}\) | magma: Discriminant(Integers(K));
sage: K.disc()
gp: K.disc
| |
| Root discriminant: | $44.82$ | magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
sage: (K.disc().abs())^(1./K.degree())
gp: abs(K.disc)^(1/poldegree(K.pol))
| |
| Ramified primes: | $2, 5, 19, 29, 109$ | magma: PrimeDivisors(Discriminant(Integers(K)));
sage: K.disc().support()
gp: factor(abs(K.disc))[,1]~
| |
| This field is not Galois over $\Q$. | |||
| This is not a CM field. | |||
Integral basis (with respect to field generator \(a\))
$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $a^{6}$, $a^{7}$, $a^{8}$, $a^{9}$, $a^{10}$, $a^{11}$, $a^{12}$, $\frac{1}{2} a^{13} - \frac{1}{2} a^{12} - \frac{1}{2} a^{10} - \frac{1}{2} a^{8} - \frac{1}{2} a^{6} - \frac{1}{2} a^{5} - \frac{1}{2} a^{3} - \frac{1}{2}$, $\frac{1}{4} a^{14} - \frac{1}{4} a^{12} + \frac{1}{4} a^{11} + \frac{1}{4} a^{10} + \frac{1}{4} a^{9} - \frac{1}{4} a^{8} - \frac{1}{4} a^{7} - \frac{1}{2} a^{6} - \frac{1}{4} a^{5} - \frac{1}{4} a^{4} + \frac{1}{4} a^{3} - \frac{1}{2} a^{2} - \frac{1}{4} a + \frac{1}{4}$, $\frac{1}{8} a^{15} - \frac{1}{8} a^{14} - \frac{1}{8} a^{13} + \frac{1}{4} a^{12} - \frac{1}{2} a^{11} - \frac{1}{4} a^{9} - \frac{1}{8} a^{7} - \frac{3}{8} a^{6} - \frac{1}{2} a^{5} + \frac{1}{4} a^{4} + \frac{1}{8} a^{3} + \frac{1}{8} a^{2} - \frac{1}{4} a + \frac{3}{8}$, $\frac{1}{16} a^{16} - \frac{1}{8} a^{14} + \frac{1}{16} a^{13} - \frac{1}{8} a^{12} - \frac{1}{4} a^{11} - \frac{1}{8} a^{10} + \frac{3}{8} a^{9} - \frac{1}{16} a^{8} + \frac{1}{4} a^{7} - \frac{7}{16} a^{6} + \frac{3}{8} a^{5} - \frac{5}{16} a^{4} + \frac{1}{8} a^{3} - \frac{1}{16} a^{2} - \frac{7}{16} a - \frac{5}{16}$, $\frac{1}{32} a^{17} - \frac{1}{32} a^{16} - \frac{1}{16} a^{15} + \frac{3}{32} a^{14} - \frac{3}{32} a^{13} + \frac{7}{16} a^{12} - \frac{7}{16} a^{11} - \frac{1}{4} a^{10} + \frac{9}{32} a^{9} - \frac{11}{32} a^{8} + \frac{5}{32} a^{7} - \frac{3}{32} a^{6} + \frac{5}{32} a^{5} - \frac{9}{32} a^{4} - \frac{3}{32} a^{3} - \frac{3}{16} a^{2} - \frac{7}{16} a + \frac{5}{32}$, $\frac{1}{192} a^{18} + \frac{1}{96} a^{17} - \frac{5}{192} a^{16} - \frac{1}{64} a^{15} + \frac{11}{96} a^{14} + \frac{5}{192} a^{13} - \frac{7}{16} a^{12} - \frac{17}{96} a^{11} - \frac{21}{64} a^{10} - \frac{1}{3} a^{9} - \frac{1}{16} a^{8} + \frac{5}{16} a^{7} + \frac{7}{48} a^{6} + \frac{11}{96} a^{5} - \frac{13}{32} a^{4} - \frac{95}{192} a^{3} + \frac{1}{6} a^{2} - \frac{85}{192} a + \frac{31}{192}$, $\frac{1}{492436426945370607900049030630819646592} a^{19} - \frac{359631450692087378597289259693973553}{164145475648456869300016343543606548864} a^{18} + \frac{2514977933533459101793229951339438743}{164145475648456869300016343543606548864} a^{17} - \frac{2692635826512014267622862666657711795}{246218213472685303950024515315409823296} a^{16} - \frac{29038663047245896484087927533284305795}{492436426945370607900049030630819646592} a^{15} + \frac{7261215451454238725334269528898538673}{164145475648456869300016343543606548864} a^{14} + \frac{82971426451593902188167412173201847679}{492436426945370607900049030630819646592} a^{13} - \frac{114120153957800514727528268269972140539}{246218213472685303950024515315409823296} a^{12} + \frac{159356778916299682060918072801700139251}{492436426945370607900049030630819646592} a^{11} - \frac{201677967247250092328979700082903273701}{492436426945370607900049030630819646592} a^{10} + \frac{6395299215022599835198597801833962383}{61554553368171325987506128828852455824} a^{9} - \frac{338824747468650005829726400256099377}{41036368912114217325004085885901637216} a^{8} - \frac{6310420305944979311239657488609355223}{123109106736342651975012257657704911648} a^{7} - \frac{53960431705798562322305624776991005037}{246218213472685303950024515315409823296} a^{6} + \frac{3754901512969750735954650625829303711}{61554553368171325987506128828852455824} a^{5} - \frac{48557136113463802663985982285089708117}{492436426945370607900049030630819646592} a^{4} - \frac{1285182143247727474905422346196363131}{164145475648456869300016343543606548864} a^{3} + \frac{18061061983754260597357054760028217147}{492436426945370607900049030630819646592} a^{2} + \frac{8343086923616003382454087180059865495}{20518184456057108662502042942950818608} a + \frac{28207773471569169203224046828164321921}{492436426945370607900049030630819646592}$
Class group and class number
Trivial group, which has order $1$ (assuming GRH)
Unit group
| Rank: | $12$ | magma: UnitRank(K);
sage: UK.rank()
gp: K.fu
| |
| Torsion generator: | \( -1 \) (order $2$) | magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
sage: UK.torsion_generator()
gp: K.tu[2]
| |
| Fundamental units: | Units are too long to display, but can be downloaded with other data for this field from 'Stored data to gp' link to the right (assuming GRH) | magma: [K!f(g): g in Generators(UK)];
sage: UK.fundamental_units()
gp: K.fu
| |
| Regulator: | \( 975258653.333 \) (assuming GRH) | magma: Regulator(K);
sage: K.regulator()
gp: K.reg
|
Galois group
| A solvable group of order 819200 |
| The 275 conjugacy class representatives for t20n955 are not computed |
| Character table for t20n955 is not computed |
Intermediate fields
| \(\Q(\sqrt{5}) \), 10.10.8172298511640625.1 |
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Sibling fields
Frobenius cycle types
| $p$ | 2 | 3 | 5 | 7 | 11 | 13 | 17 | 19 | 23 | 29 | 31 | 37 | 41 | 43 | 47 | 53 | 59 |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Cycle type | R | $16{,}\,{\href{/LocalNumberField/3.2.0.1}{2} }^{2}$ | R | ${\href{/LocalNumberField/7.8.0.1}{8} }^{2}{,}\,{\href{/LocalNumberField/7.4.0.1}{4} }$ | ${\href{/LocalNumberField/11.5.0.1}{5} }^{2}{,}\,{\href{/LocalNumberField/11.4.0.1}{4} }^{2}{,}\,{\href{/LocalNumberField/11.2.0.1}{2} }$ | ${\href{/LocalNumberField/13.10.0.1}{10} }^{2}$ | ${\href{/LocalNumberField/17.8.0.1}{8} }^{2}{,}\,{\href{/LocalNumberField/17.2.0.1}{2} }^{2}$ | R | $20$ | R | ${\href{/LocalNumberField/31.8.0.1}{8} }{,}\,{\href{/LocalNumberField/31.4.0.1}{4} }{,}\,{\href{/LocalNumberField/31.2.0.1}{2} }^{3}{,}\,{\href{/LocalNumberField/31.1.0.1}{1} }^{2}$ | $16{,}\,{\href{/LocalNumberField/37.4.0.1}{4} }$ | ${\href{/LocalNumberField/41.8.0.1}{8} }{,}\,{\href{/LocalNumberField/41.4.0.1}{4} }{,}\,{\href{/LocalNumberField/41.2.0.1}{2} }^{2}{,}\,{\href{/LocalNumberField/41.1.0.1}{1} }^{4}$ | $16{,}\,{\href{/LocalNumberField/43.2.0.1}{2} }^{2}$ | ${\href{/LocalNumberField/47.8.0.1}{8} }^{2}{,}\,{\href{/LocalNumberField/47.4.0.1}{4} }$ | ${\href{/LocalNumberField/53.8.0.1}{8} }{,}\,{\href{/LocalNumberField/53.4.0.1}{4} }^{3}$ | ${\href{/LocalNumberField/59.8.0.1}{8} }{,}\,{\href{/LocalNumberField/59.4.0.1}{4} }^{2}{,}\,{\href{/LocalNumberField/59.2.0.1}{2} }^{2}$ |
In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
| $p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
|---|---|---|---|---|---|---|---|
| $2$ | 2.4.4.3 | $x^{4} + 2 x^{2} + 4 x + 4$ | $2$ | $2$ | $4$ | $D_{4}$ | $[2, 2]^{2}$ |
| 2.8.0.1 | $x^{8} + x^{4} + x^{3} + x + 1$ | $1$ | $8$ | $0$ | $C_8$ | $[\ ]^{8}$ | |
| 2.8.0.1 | $x^{8} + x^{4} + x^{3} + x + 1$ | $1$ | $8$ | $0$ | $C_8$ | $[\ ]^{8}$ | |
| 5 | Data not computed | ||||||
| $19$ | $\Q_{19}$ | $x + 4$ | $1$ | $1$ | $0$ | Trivial | $[\ ]$ |
| $\Q_{19}$ | $x + 4$ | $1$ | $1$ | $0$ | Trivial | $[\ ]$ | |
| 19.4.2.2 | $x^{4} - 19 x^{2} + 722$ | $2$ | $2$ | $2$ | $C_4$ | $[\ ]_{2}^{2}$ | |
| 19.4.2.2 | $x^{4} - 19 x^{2} + 722$ | $2$ | $2$ | $2$ | $C_4$ | $[\ ]_{2}^{2}$ | |
| 19.10.0.1 | $x^{10} + x^{2} - 2 x + 14$ | $1$ | $10$ | $0$ | $C_{10}$ | $[\ ]^{10}$ | |
| $29$ | $\Q_{29}$ | $x + 2$ | $1$ | $1$ | $0$ | Trivial | $[\ ]$ |
| $\Q_{29}$ | $x + 2$ | $1$ | $1$ | $0$ | Trivial | $[\ ]$ | |
| 29.2.0.1 | $x^{2} - x + 3$ | $1$ | $2$ | $0$ | $C_2$ | $[\ ]^{2}$ | |
| 29.8.0.1 | $x^{8} + x^{2} - 3 x + 3$ | $1$ | $8$ | $0$ | $C_8$ | $[\ ]^{8}$ | |
| 29.8.6.2 | $x^{8} + 145 x^{4} + 7569$ | $4$ | $2$ | $6$ | $C_4\times C_2$ | $[\ ]_{4}^{2}$ | |
| $109$ | $\Q_{109}$ | $x + 6$ | $1$ | $1$ | $0$ | Trivial | $[\ ]$ |
| $\Q_{109}$ | $x + 6$ | $1$ | $1$ | $0$ | Trivial | $[\ ]$ | |
| 109.2.1.2 | $x^{2} + 654$ | $2$ | $1$ | $1$ | $C_2$ | $[\ ]_{2}$ | |
| 109.2.0.1 | $x^{2} - x + 6$ | $1$ | $2$ | $0$ | $C_2$ | $[\ ]^{2}$ | |
| 109.2.0.1 | $x^{2} - x + 6$ | $1$ | $2$ | $0$ | $C_2$ | $[\ ]^{2}$ | |
| 109.2.1.2 | $x^{2} + 654$ | $2$ | $1$ | $1$ | $C_2$ | $[\ ]_{2}$ | |
| 109.2.0.1 | $x^{2} - x + 6$ | $1$ | $2$ | $0$ | $C_2$ | $[\ ]^{2}$ | |
| 109.4.2.1 | $x^{4} + 1199 x^{2} + 427716$ | $2$ | $2$ | $2$ | $C_2^2$ | $[\ ]_{2}^{2}$ | |
| 109.4.0.1 | $x^{4} - x + 30$ | $1$ | $4$ | $0$ | $C_4$ | $[\ ]^{4}$ | |