Normalized defining polynomial
\( x^{20} - 4 x^{19} + 9 x^{18} - 126 x^{16} + 336 x^{15} - 835 x^{14} + 775 x^{13} + 752 x^{12} - 9470 x^{11} + 29423 x^{10} - 59331 x^{9} + 12898 x^{8} + 147378 x^{7} - 404468 x^{6} + 420297 x^{5} - 28636 x^{4} - 163979 x^{3} + 298031 x^{2} - 232758 x + 82031 \)
Invariants
| Degree: | $20$ | magma: Degree(K);
sage: K.degree()
gp: poldegree(K.pol)
| |
| Signature: | $[4, 8]$ | magma: Signature(K);
sage: K.signature()
gp: K.sign
| |
| Discriminant: | \(997189935746553281906252500000000=2^{8}\cdot 5^{10}\cdot 52501^{5}\) | magma: Discriminant(Integers(K));
sage: K.disc()
gp: K.disc
| |
| Root discriminant: | $44.66$ | magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
sage: (K.disc().abs())^(1./K.degree())
gp: abs(K.disc)^(1/poldegree(K.pol))
| |
| Ramified primes: | $2, 5, 52501$ | magma: PrimeDivisors(Discriminant(Integers(K)));
sage: K.disc().support()
gp: factor(abs(K.disc))[,1]~
| |
| This field is not Galois over $\Q$. | |||
| This is not a CM field. | |||
Integral basis (with respect to field generator \(a\))
$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $a^{6}$, $a^{7}$, $a^{8}$, $a^{9}$, $a^{10}$, $a^{11}$, $a^{12}$, $a^{13}$, $a^{14}$, $a^{15}$, $a^{16}$, $a^{17}$, $a^{18}$, $\frac{1}{221301397043161367188249691233614393967009142322305070723442} a^{19} + \frac{82952729357248774766465549432892635353864644835014444468947}{221301397043161367188249691233614393967009142322305070723442} a^{18} - \frac{5210899563618158641961003535937489030728731534438671888787}{110650698521580683594124845616807196983504571161152535361721} a^{17} + \frac{24852162891482022441685924654743141375073393940568261422991}{110650698521580683594124845616807196983504571161152535361721} a^{16} - \frac{9128958622342365221568309469022959911610710405294461072200}{110650698521580683594124845616807196983504571161152535361721} a^{15} + \frac{34126029762482356681021236008189234029444590214063503773956}{110650698521580683594124845616807196983504571161152535361721} a^{14} - \frac{469681060001014982126491233940203137613455856632093449723}{2068237355543564179329436366669293401560833105815935240406} a^{13} + \frac{32954111871292598411917073663690223899341610893493832621176}{110650698521580683594124845616807196983504571161152535361721} a^{12} + \frac{36448180785993714248634978095234569528057292445773569697465}{110650698521580683594124845616807196983504571161152535361721} a^{11} + \frac{53055263448270924115219114839779006527535946498662272265467}{110650698521580683594124845616807196983504571161152535361721} a^{10} + \frac{24489543383621115080180361046506214355921705086308086791391}{221301397043161367188249691233614393967009142322305070723442} a^{9} - \frac{10690474441413565902547222227169580049494196842475537213582}{110650698521580683594124845616807196983504571161152535361721} a^{8} + \frac{1142580619024127124852566085852862363643897807756900428249}{10059154411052789417647713237891563362136779196468412305611} a^{7} - \frac{4126055431255466991817693178378841082543843250200293894953}{10059154411052789417647713237891563362136779196468412305611} a^{6} - \frac{3185083225961564493750975263602517494777598485936173936898}{110650698521580683594124845616807196983504571161152535361721} a^{5} + \frac{33195694288159799888680608795321887362713853359987464947539}{221301397043161367188249691233614393967009142322305070723442} a^{4} + \frac{46482720064372720575465671144042640323926165251992993842747}{221301397043161367188249691233614393967009142322305070723442} a^{3} - \frac{18723511173638237999888095573356395085972985548188389021555}{110650698521580683594124845616807196983504571161152535361721} a^{2} + \frac{10276217459296535046648925472869691715262040396231820129021}{221301397043161367188249691233614393967009142322305070723442} a - \frac{22884353411927718789155930013460117205059393645768066611693}{221301397043161367188249691233614393967009142322305070723442}$
Class group and class number
$C_{2}$, which has order $2$ (assuming GRH)
Unit group
| Rank: | $11$ | magma: UnitRank(K);
sage: UK.rank()
gp: K.fu
| |
| Torsion generator: | \( -1 \) (order $2$) | magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
sage: UK.torsion_generator()
gp: K.tu[2]
| |
| Fundamental units: | Units are too long to display, but can be downloaded with other data for this field from 'Stored data to gp' link to the right (assuming GRH) | magma: [K!f(g): g in Generators(UK)];
sage: UK.fundamental_units()
gp: K.fu
| |
| Regulator: | \( 249759139.276 \) (assuming GRH) | magma: Regulator(K);
sage: K.regulator()
gp: K.reg
|
Galois group
| A solvable group of order 102400 |
| The 130 conjugacy class representatives for t20n756 are not computed |
| Character table for t20n756 is not computed |
Intermediate fields
| \(\Q(\sqrt{5}) \), 10.10.8613609378125.1 |
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Sibling fields
Frobenius cycle types
| $p$ | 2 | 3 | 5 | 7 | 11 | 13 | 17 | 19 | 23 | 29 | 31 | 37 | 41 | 43 | 47 | 53 | 59 |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Cycle type | R | ${\href{/LocalNumberField/3.10.0.1}{10} }^{2}$ | R | ${\href{/LocalNumberField/7.10.0.1}{10} }^{2}$ | ${\href{/LocalNumberField/11.4.0.1}{4} }{,}\,{\href{/LocalNumberField/11.2.0.1}{2} }^{7}{,}\,{\href{/LocalNumberField/11.1.0.1}{1} }^{2}$ | ${\href{/LocalNumberField/13.8.0.1}{8} }{,}\,{\href{/LocalNumberField/13.4.0.1}{4} }^{2}{,}\,{\href{/LocalNumberField/13.2.0.1}{2} }^{2}$ | ${\href{/LocalNumberField/17.8.0.1}{8} }{,}\,{\href{/LocalNumberField/17.4.0.1}{4} }^{2}{,}\,{\href{/LocalNumberField/17.2.0.1}{2} }^{2}$ | ${\href{/LocalNumberField/19.10.0.1}{10} }^{2}$ | ${\href{/LocalNumberField/23.8.0.1}{8} }{,}\,{\href{/LocalNumberField/23.4.0.1}{4} }^{2}{,}\,{\href{/LocalNumberField/23.2.0.1}{2} }^{2}$ | ${\href{/LocalNumberField/29.5.0.1}{5} }^{2}{,}\,{\href{/LocalNumberField/29.2.0.1}{2} }^{5}$ | ${\href{/LocalNumberField/31.10.0.1}{10} }^{2}$ | ${\href{/LocalNumberField/37.4.0.1}{4} }^{5}$ | ${\href{/LocalNumberField/41.5.0.1}{5} }^{4}$ | ${\href{/LocalNumberField/43.4.0.1}{4} }^{2}{,}\,{\href{/LocalNumberField/43.2.0.1}{2} }^{6}$ | ${\href{/LocalNumberField/47.10.0.1}{10} }^{2}$ | ${\href{/LocalNumberField/53.8.0.1}{8} }{,}\,{\href{/LocalNumberField/53.4.0.1}{4} }^{2}{,}\,{\href{/LocalNumberField/53.2.0.1}{2} }^{2}$ | ${\href{/LocalNumberField/59.10.0.1}{10} }{,}\,{\href{/LocalNumberField/59.4.0.1}{4} }{,}\,{\href{/LocalNumberField/59.2.0.1}{2} }^{3}$ |
In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
| $p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
|---|---|---|---|---|---|---|---|
| $2$ | 2.2.0.1 | $x^{2} - x + 1$ | $1$ | $2$ | $0$ | $C_2$ | $[\ ]^{2}$ |
| 2.2.0.1 | $x^{2} - x + 1$ | $1$ | $2$ | $0$ | $C_2$ | $[\ ]^{2}$ | |
| 2.8.8.3 | $x^{8} + 2 x^{7} + 2 x^{6} + 16$ | $2$ | $4$ | $8$ | $C_2^3: C_4$ | $[2, 2, 2]^{4}$ | |
| 2.8.0.1 | $x^{8} + x^{4} + x^{3} + x + 1$ | $1$ | $8$ | $0$ | $C_8$ | $[\ ]^{8}$ | |
| $5$ | 5.10.5.1 | $x^{10} - 50 x^{6} + 625 x^{2} - 12500$ | $2$ | $5$ | $5$ | $C_{10}$ | $[\ ]_{2}^{5}$ |
| 5.10.5.1 | $x^{10} - 50 x^{6} + 625 x^{2} - 12500$ | $2$ | $5$ | $5$ | $C_{10}$ | $[\ ]_{2}^{5}$ | |
| 52501 | Data not computed | ||||||