Normalized defining polynomial
\( x^{20} - 21 x^{18} + 172 x^{16} - 753 x^{14} + 2321 x^{12} - 5692 x^{10} + 11298 x^{8} - 22427 x^{6} + 37401 x^{4} - 40334 x^{2} + 25281 \)
Invariants
| Degree: | $20$ | magma: Degree(K);
sage: K.degree()
gp: poldegree(K.pol)
| |
| Signature: | $[4, 8]$ | magma: Signature(K);
sage: K.signature()
gp: K.sign
| |
| Discriminant: | \(991469737933152814126207682281=97^{2}\cdot 397^{2}\cdot 401^{8}\) | magma: Discriminant(Integers(K));
sage: K.disc()
gp: K.disc
| |
| Root discriminant: | $31.61$ | magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
sage: (K.disc().abs())^(1./K.degree())
gp: abs(K.disc)^(1/poldegree(K.pol))
| |
| Ramified primes: | $97, 397, 401$ | magma: PrimeDivisors(Discriminant(Integers(K)));
sage: K.disc().support()
gp: factor(abs(K.disc))[,1]~
| |
| This field is not Galois over $\Q$. | |||
| This is not a CM field. | |||
Integral basis (with respect to field generator \(a\))
$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $a^{6}$, $a^{7}$, $a^{8}$, $a^{9}$, $\frac{1}{2} a^{10} - \frac{1}{2} a^{9} - \frac{1}{2} a^{7} - \frac{1}{2} a^{6} - \frac{1}{2} a^{3} - \frac{1}{2} a^{2} - \frac{1}{2}$, $\frac{1}{2} a^{11} - \frac{1}{2} a^{9} - \frac{1}{2} a^{8} - \frac{1}{2} a^{6} - \frac{1}{2} a^{4} - \frac{1}{2} a^{2} - \frac{1}{2} a - \frac{1}{2}$, $\frac{1}{2} a^{12} - \frac{1}{2} a^{6} - \frac{1}{2} a^{5} - \frac{1}{2} a - \frac{1}{2}$, $\frac{1}{2} a^{13} - \frac{1}{2} a^{7} - \frac{1}{2} a^{6} - \frac{1}{2} a^{2} - \frac{1}{2} a$, $\frac{1}{46} a^{14} + \frac{1}{23} a^{12} - \frac{2}{23} a^{10} + \frac{13}{46} a^{8} - \frac{1}{2} a^{7} - \frac{3}{23} a^{6} + \frac{7}{23} a^{4} - \frac{1}{2} a^{3} + \frac{1}{46} a^{2} - \frac{10}{23}$, $\frac{1}{46} a^{15} + \frac{1}{23} a^{13} - \frac{2}{23} a^{11} + \frac{13}{46} a^{9} - \frac{1}{2} a^{8} - \frac{3}{23} a^{7} + \frac{7}{23} a^{5} - \frac{1}{2} a^{4} + \frac{1}{46} a^{3} - \frac{10}{23} a$, $\frac{1}{46} a^{16} - \frac{4}{23} a^{12} - \frac{1}{23} a^{10} + \frac{7}{23} a^{8} - \frac{1}{2} a^{7} + \frac{3}{46} a^{6} - \frac{1}{2} a^{5} + \frac{19}{46} a^{4} - \frac{1}{2} a^{3} + \frac{1}{46} a^{2} + \frac{17}{46}$, $\frac{1}{46} a^{17} - \frac{4}{23} a^{13} - \frac{1}{23} a^{11} + \frac{7}{23} a^{9} - \frac{1}{2} a^{8} + \frac{3}{46} a^{7} - \frac{1}{2} a^{6} + \frac{19}{46} a^{5} - \frac{1}{2} a^{4} + \frac{1}{46} a^{3} + \frac{17}{46} a$, $\frac{1}{31501009737510094} a^{18} + \frac{231144759953553}{31501009737510094} a^{16} + \frac{20065929532077}{31501009737510094} a^{14} - \frac{1275115935894047}{15750504868755047} a^{12} + \frac{1997629501298073}{15750504868755047} a^{10} - \frac{1}{2} a^{9} + \frac{4408745231165870}{15750504868755047} a^{8} - \frac{1}{2} a^{7} - \frac{6724493582771743}{15750504868755047} a^{6} + \frac{2078513425921218}{15750504868755047} a^{4} - \frac{5182046579638143}{31501009737510094} a^{2} + \frac{6916083348068937}{31501009737510094}$, $\frac{1}{5008660548264104946} a^{19} + \frac{5859362882503182}{834776758044017491} a^{17} - \frac{42437816760155441}{5008660548264104946} a^{15} - \frac{211541613433507747}{1669553516088034982} a^{13} - \frac{37777819127580283}{5008660548264104946} a^{11} + \frac{539925910768837468}{2504330274132052473} a^{9} - \frac{1}{2} a^{8} + \frac{545871601938564031}{1669553516088034982} a^{7} + \frac{1364863686600376279}{5008660548264104946} a^{5} - \frac{30489140359345119}{1669553516088034982} a^{3} - \frac{1}{2} a^{2} - \frac{1165160939131638910}{2504330274132052473} a$
Class group and class number
Trivial group, which has order $1$ (assuming GRH)
Unit group
| Rank: | $11$ | magma: UnitRank(K);
sage: UK.rank()
gp: K.fu
| |
| Torsion generator: | \( -1 \) (order $2$) | magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
sage: UK.torsion_generator()
gp: K.tu[2]
| |
| Fundamental units: | Units are too long to display, but can be downloaded with other data for this field from 'Stored data to gp' link to the right (assuming GRH) | magma: [K!f(g): g in Generators(UK)];
sage: UK.fundamental_units()
gp: K.fu
| |
| Regulator: | \( 9270793.42042 \) (assuming GRH) | magma: Regulator(K);
sage: K.regulator()
gp: K.reg
|
Galois group
| A solvable group of order 10240 |
| The 208 conjugacy class representatives for t20n412 are not computed |
| Character table for t20n412 is not computed |
Intermediate fields
| 5.5.160801.1, 10.2.995725734292909.1, 10.10.10265213755597.1, 10.2.2508125275297.1 |
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Sibling fields
Frobenius cycle types
| $p$ | 2 | 3 | 5 | 7 | 11 | 13 | 17 | 19 | 23 | 29 | 31 | 37 | 41 | 43 | 47 | 53 | 59 |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Cycle type | ${\href{/LocalNumberField/2.10.0.1}{10} }^{2}$ | ${\href{/LocalNumberField/3.4.0.1}{4} }^{4}{,}\,{\href{/LocalNumberField/3.2.0.1}{2} }^{2}$ | ${\href{/LocalNumberField/5.10.0.1}{10} }^{2}$ | ${\href{/LocalNumberField/7.10.0.1}{10} }^{2}$ | ${\href{/LocalNumberField/11.5.0.1}{5} }^{4}$ | ${\href{/LocalNumberField/13.4.0.1}{4} }^{4}{,}\,{\href{/LocalNumberField/13.2.0.1}{2} }^{2}$ | ${\href{/LocalNumberField/17.4.0.1}{4} }^{4}{,}\,{\href{/LocalNumberField/17.2.0.1}{2} }^{2}$ | ${\href{/LocalNumberField/19.4.0.1}{4} }^{4}{,}\,{\href{/LocalNumberField/19.2.0.1}{2} }^{2}$ | ${\href{/LocalNumberField/23.2.0.1}{2} }^{10}$ | ${\href{/LocalNumberField/29.10.0.1}{10} }^{2}$ | ${\href{/LocalNumberField/31.4.0.1}{4} }^{2}{,}\,{\href{/LocalNumberField/31.2.0.1}{2} }^{6}$ | ${\href{/LocalNumberField/37.4.0.1}{4} }^{4}{,}\,{\href{/LocalNumberField/37.2.0.1}{2} }^{2}$ | ${\href{/LocalNumberField/41.10.0.1}{10} }^{2}$ | ${\href{/LocalNumberField/43.5.0.1}{5} }^{4}$ | ${\href{/LocalNumberField/47.5.0.1}{5} }^{4}$ | ${\href{/LocalNumberField/53.4.0.1}{4} }^{4}{,}\,{\href{/LocalNumberField/53.1.0.1}{1} }^{4}$ | ${\href{/LocalNumberField/59.4.0.1}{4} }^{4}{,}\,{\href{/LocalNumberField/59.2.0.1}{2} }^{2}$ |
Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
| $p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
|---|---|---|---|---|---|---|---|
| $97$ | 97.2.0.1 | $x^{2} - x + 5$ | $1$ | $2$ | $0$ | $C_2$ | $[\ ]^{2}$ |
| 97.2.0.1 | $x^{2} - x + 5$ | $1$ | $2$ | $0$ | $C_2$ | $[\ ]^{2}$ | |
| 97.2.0.1 | $x^{2} - x + 5$ | $1$ | $2$ | $0$ | $C_2$ | $[\ ]^{2}$ | |
| 97.2.0.1 | $x^{2} - x + 5$ | $1$ | $2$ | $0$ | $C_2$ | $[\ ]^{2}$ | |
| 97.4.2.1 | $x^{4} + 873 x^{2} + 235225$ | $2$ | $2$ | $2$ | $C_2^2$ | $[\ ]_{2}^{2}$ | |
| 97.4.0.1 | $x^{4} - x + 23$ | $1$ | $4$ | $0$ | $C_4$ | $[\ ]^{4}$ | |
| 97.4.0.1 | $x^{4} - x + 23$ | $1$ | $4$ | $0$ | $C_4$ | $[\ ]^{4}$ | |
| 397 | Data not computed | ||||||
| 401 | Data not computed | ||||||