Normalized defining polynomial
\( x^{20} - x^{19} - 10 x^{18} + 12 x^{17} + 43 x^{16} - 22 x^{15} - 357 x^{14} + 349 x^{13} + 1009 x^{12} - 333 x^{11} - 5079 x^{10} + 3434 x^{9} + 9295 x^{8} + 201 x^{7} - 27900 x^{6} + 16553 x^{5} + 14016 x^{4} - 18410 x^{3} - 210 x^{2} + 11975 x + 3725 \)
Invariants
| Degree: | $20$ | magma: Degree(K);
sage: K.degree()
gp: poldegree(K.pol)
| |
| Signature: | $[4, 8]$ | magma: Signature(K);
sage: K.signature()
gp: K.sign
| |
| Discriminant: | \(9700708256022096688369140625=5^{10}\cdot 199^{5}\cdot 1471^{3}\) | magma: Discriminant(Integers(K));
sage: K.disc()
gp: K.disc
| |
| Root discriminant: | $25.08$ | magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
sage: (K.disc().abs())^(1./K.degree())
gp: abs(K.disc)^(1/poldegree(K.pol))
| |
| Ramified primes: | $5, 199, 1471$ | magma: PrimeDivisors(Discriminant(Integers(K)));
sage: K.disc().support()
gp: factor(abs(K.disc))[,1]~
| |
| This field is not Galois over $\Q$. | |||
| This is not a CM field. | |||
Integral basis (with respect to field generator \(a\))
$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $a^{6}$, $a^{7}$, $a^{8}$, $a^{9}$, $a^{10}$, $a^{11}$, $a^{12}$, $a^{13}$, $a^{14}$, $a^{15}$, $\frac{1}{5} a^{16} + \frac{2}{5} a^{15} - \frac{2}{5} a^{12} + \frac{2}{5} a^{11} + \frac{1}{5} a^{10} - \frac{2}{5} a^{8} + \frac{1}{5} a^{7} + \frac{1}{5} a^{6} + \frac{1}{5} a^{5} + \frac{2}{5} a^{4} + \frac{1}{5} a^{3} + \frac{1}{5} a^{2}$, $\frac{1}{5} a^{17} + \frac{1}{5} a^{15} - \frac{2}{5} a^{13} + \frac{1}{5} a^{12} + \frac{2}{5} a^{11} - \frac{2}{5} a^{10} - \frac{2}{5} a^{9} - \frac{1}{5} a^{7} - \frac{1}{5} a^{6} + \frac{2}{5} a^{4} - \frac{1}{5} a^{3} - \frac{2}{5} a^{2}$, $\frac{1}{5} a^{18} - \frac{2}{5} a^{15} - \frac{2}{5} a^{14} + \frac{1}{5} a^{13} - \frac{1}{5} a^{12} + \frac{1}{5} a^{11} + \frac{2}{5} a^{10} + \frac{1}{5} a^{8} - \frac{2}{5} a^{7} - \frac{1}{5} a^{6} + \frac{1}{5} a^{5} + \frac{2}{5} a^{4} + \frac{2}{5} a^{3} - \frac{1}{5} a^{2}$, $\frac{1}{4771901716743075993308637663691351168757575} a^{19} - \frac{69161595572949407553688939747440124878267}{4771901716743075993308637663691351168757575} a^{18} - \frac{56806402916332288542023286003193109267683}{4771901716743075993308637663691351168757575} a^{17} - \frac{68832747071567198327439600671575279720167}{954380343348615198661727532738270233751515} a^{16} + \frac{263616812080381382841878449764516865799664}{681700245249010856186948237670193024108225} a^{15} + \frac{64811247455985585229557763646817786356703}{954380343348615198661727532738270233751515} a^{14} + \frac{1683582331857874157480660477063955014557943}{4771901716743075993308637663691351168757575} a^{13} - \frac{631942824187342003089544671545788008458109}{4771901716743075993308637663691351168757575} a^{12} + \frac{535309274723180738481720998968305502438558}{4771901716743075993308637663691351168757575} a^{11} + \frac{14641395777733288387851781370335897977609}{4771901716743075993308637663691351168757575} a^{10} - \frac{834731501704685959721424833749875467463093}{4771901716743075993308637663691351168757575} a^{9} + \frac{2269460307376676004966948800552970255852247}{4771901716743075993308637663691351168757575} a^{8} - \frac{1281915370272561110219448251216017760272267}{4771901716743075993308637663691351168757575} a^{7} + \frac{571220516864636612970665178030559188491158}{4771901716743075993308637663691351168757575} a^{6} - \frac{318909001222485909323312819611815863627709}{681700245249010856186948237670193024108225} a^{5} + \frac{1885556432540013502873589705821889749823636}{4771901716743075993308637663691351168757575} a^{4} + \frac{276961806677611653904157225705257030272638}{954380343348615198661727532738270233751515} a^{3} + \frac{426543975259924486746126816048299151937726}{954380343348615198661727532738270233751515} a^{2} - \frac{19095650184112409085694317483867359787622}{190876068669723039732345506547654046750303} a + \frac{15651720413525659876090510109608909717327}{190876068669723039732345506547654046750303}$
Class group and class number
Trivial group, which has order $1$ (assuming GRH)
Unit group
| Rank: | $11$ | magma: UnitRank(K);
sage: UK.rank()
gp: K.fu
| |
| Torsion generator: | \( -1 \) (order $2$) | magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
sage: UK.torsion_generator()
gp: K.tu[2]
| |
| Fundamental units: | Units are too long to display, but can be downloaded with other data for this field from 'Stored data to gp' link to the right (assuming GRH) | magma: [K!f(g): g in Generators(UK)];
sage: UK.fundamental_units()
gp: K.fu
| |
| Regulator: | \( 918016.132042 \) (assuming GRH) | magma: Regulator(K);
sage: K.regulator()
gp: K.reg
|
Galois group
| A non-solvable group of order 7372800 |
| The 189 conjugacy class representatives for t20n1022 are not computed |
| Character table for t20n1022 is not computed |
Intermediate fields
| \(\Q(\sqrt{5}) \), 10.2.914778125.1 |
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Sibling fields
| Degree 20 siblings: | data not computed |
| Degree 32 sibling: | data not computed |
| Degree 40 siblings: | data not computed |
Frobenius cycle types
| $p$ | 2 | 3 | 5 | 7 | 11 | 13 | 17 | 19 | 23 | 29 | 31 | 37 | 41 | 43 | 47 | 53 | 59 |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Cycle type | ${\href{/LocalNumberField/2.10.0.1}{10} }^{2}$ | ${\href{/LocalNumberField/3.10.0.1}{10} }^{2}$ | R | $16{,}\,{\href{/LocalNumberField/7.2.0.1}{2} }^{2}$ | ${\href{/LocalNumberField/11.5.0.1}{5} }^{2}{,}\,{\href{/LocalNumberField/11.4.0.1}{4} }{,}\,{\href{/LocalNumberField/11.3.0.1}{3} }^{2}$ | $16{,}\,{\href{/LocalNumberField/13.2.0.1}{2} }^{2}$ | ${\href{/LocalNumberField/17.12.0.1}{12} }{,}\,{\href{/LocalNumberField/17.4.0.1}{4} }^{2}$ | ${\href{/LocalNumberField/19.5.0.1}{5} }^{2}{,}\,{\href{/LocalNumberField/19.4.0.1}{4} }^{2}{,}\,{\href{/LocalNumberField/19.2.0.1}{2} }$ | ${\href{/LocalNumberField/23.10.0.1}{10} }^{2}$ | ${\href{/LocalNumberField/29.8.0.1}{8} }{,}\,{\href{/LocalNumberField/29.5.0.1}{5} }^{2}{,}\,{\href{/LocalNumberField/29.1.0.1}{1} }^{2}$ | ${\href{/LocalNumberField/31.8.0.1}{8} }{,}\,{\href{/LocalNumberField/31.4.0.1}{4} }{,}\,{\href{/LocalNumberField/31.2.0.1}{2} }^{3}{,}\,{\href{/LocalNumberField/31.1.0.1}{1} }^{2}$ | ${\href{/LocalNumberField/37.12.0.1}{12} }{,}\,{\href{/LocalNumberField/37.4.0.1}{4} }^{2}$ | ${\href{/LocalNumberField/41.8.0.1}{8} }{,}\,{\href{/LocalNumberField/41.5.0.1}{5} }^{2}{,}\,{\href{/LocalNumberField/41.1.0.1}{1} }^{2}$ | ${\href{/LocalNumberField/43.8.0.1}{8} }^{2}{,}\,{\href{/LocalNumberField/43.4.0.1}{4} }$ | ${\href{/LocalNumberField/47.12.0.1}{12} }{,}\,{\href{/LocalNumberField/47.4.0.1}{4} }^{2}$ | ${\href{/LocalNumberField/53.10.0.1}{10} }^{2}$ | ${\href{/LocalNumberField/59.8.0.1}{8} }{,}\,{\href{/LocalNumberField/59.4.0.1}{4} }{,}\,{\href{/LocalNumberField/59.2.0.1}{2} }^{3}{,}\,{\href{/LocalNumberField/59.1.0.1}{1} }^{2}$ |
In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
| $p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
|---|---|---|---|---|---|---|---|
| $5$ | 5.4.2.1 | $x^{4} + 15 x^{2} + 100$ | $2$ | $2$ | $2$ | $C_2^2$ | $[\ ]_{2}^{2}$ |
| 5.4.2.1 | $x^{4} + 15 x^{2} + 100$ | $2$ | $2$ | $2$ | $C_2^2$ | $[\ ]_{2}^{2}$ | |
| 5.12.6.1 | $x^{12} + 500 x^{6} - 3125 x^{2} + 62500$ | $2$ | $6$ | $6$ | $C_6\times C_2$ | $[\ ]_{2}^{6}$ | |
| 199 | Data not computed | ||||||
| 1471 | Data not computed | ||||||