Normalized defining polynomial
\( x^{20} - 4 x^{19} - 2 x^{18} + 36 x^{17} - 69 x^{16} + 24 x^{15} + 84 x^{14} - 120 x^{13} - 102 x^{12} + 488 x^{11} - 704 x^{10} + 488 x^{9} - 102 x^{8} - 120 x^{7} + 84 x^{6} + 24 x^{5} - 69 x^{4} + 36 x^{3} - 2 x^{2} - 4 x + 1 \)
Invariants
| Degree: | $20$ | magma: Degree(K);
sage: K.degree()
gp: poldegree(K.pol)
| |
| Signature: | $[4, 8]$ | magma: Signature(K);
sage: K.signature()
gp: K.sign
| |
| Discriminant: | \(96479729228174488169059713024=2^{63}\cdot 3^{21}\) | magma: Discriminant(Integers(K));
sage: K.disc()
gp: K.disc
| |
| Root discriminant: | $28.13$ | magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
sage: (K.disc().abs())^(1./K.degree())
gp: abs(K.disc)^(1/poldegree(K.pol))
| |
| Ramified primes: | $2, 3$ | magma: PrimeDivisors(Discriminant(Integers(K)));
sage: K.disc().support()
gp: factor(abs(K.disc))[,1]~
| |
| This field is not Galois over $\Q$. | |||
| This is not a CM field. | |||
Integral basis (with respect to field generator \(a\))
$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $a^{6}$, $a^{7}$, $a^{8}$, $a^{9}$, $a^{10}$, $a^{11}$, $\frac{1}{3} a^{12} + \frac{1}{3} a^{9} + \frac{1}{3} a^{3} + \frac{1}{3}$, $\frac{1}{3} a^{13} + \frac{1}{3} a^{10} + \frac{1}{3} a^{4} + \frac{1}{3} a$, $\frac{1}{3} a^{14} + \frac{1}{3} a^{11} + \frac{1}{3} a^{5} + \frac{1}{3} a^{2}$, $\frac{1}{3} a^{15} - \frac{1}{3} a^{9} + \frac{1}{3} a^{6} - \frac{1}{3}$, $\frac{1}{18} a^{16} - \frac{1}{9} a^{15} + \frac{1}{9} a^{13} + \frac{1}{9} a^{12} - \frac{1}{3} a^{11} + \frac{2}{9} a^{10} - \frac{1}{9} a^{9} + \frac{1}{3} a^{8} - \frac{4}{9} a^{7} - \frac{4}{9} a^{6} - \frac{1}{3} a^{5} + \frac{4}{9} a^{4} - \frac{2}{9} a^{3} - \frac{4}{9} a + \frac{7}{18}$, $\frac{1}{36} a^{17} - \frac{1}{36} a^{16} + \frac{1}{9} a^{15} - \frac{1}{9} a^{14} - \frac{1}{18} a^{13} + \frac{1}{18} a^{12} - \frac{2}{9} a^{11} - \frac{1}{9} a^{10} + \frac{1}{9} a^{9} + \frac{4}{9} a^{8} - \frac{4}{9} a^{7} - \frac{2}{9} a^{6} + \frac{7}{18} a^{5} - \frac{1}{18} a^{4} - \frac{4}{9} a^{3} + \frac{1}{9} a^{2} - \frac{7}{36} a + \frac{7}{36}$, $\frac{1}{3452760} a^{18} - \frac{173}{191820} a^{17} + \frac{10393}{383640} a^{16} - \frac{815}{28773} a^{15} + \frac{36919}{575460} a^{14} - \frac{641}{12510} a^{13} + \frac{2569}{38364} a^{12} + \frac{22078}{47955} a^{11} + \frac{439}{47955} a^{10} + \frac{125914}{431595} a^{9} + \frac{439}{47955} a^{8} + \frac{22078}{47955} a^{7} + \frac{2569}{38364} a^{6} - \frac{641}{12510} a^{5} + \frac{36919}{575460} a^{4} - \frac{815}{28773} a^{3} + \frac{10393}{383640} a^{2} - \frac{173}{191820} a + \frac{1}{3452760}$, $\frac{1}{6905520} a^{19} - \frac{1}{6905520} a^{18} - \frac{623}{460368} a^{17} - \frac{33293}{2301840} a^{16} - \frac{128441}{1150920} a^{15} - \frac{64759}{1150920} a^{14} + \frac{130397}{1150920} a^{13} - \frac{174629}{1150920} a^{12} - \frac{50711}{287730} a^{11} - \frac{45439}{431595} a^{10} + \frac{19009}{431595} a^{9} + \frac{1991}{57546} a^{8} + \frac{50041}{383640} a^{7} + \frac{56783}{383640} a^{6} + \frac{64841}{1150920} a^{5} + \frac{12367}{1150920} a^{4} - \frac{43781}{2301840} a^{3} - \frac{257491}{2301840} a^{2} + \frac{1815319}{6905520} a + \frac{770393}{6905520}$
Class group and class number
Trivial group, which has order $1$ (assuming GRH)
Unit group
| Rank: | $11$ | magma: UnitRank(K);
sage: UK.rank()
gp: K.fu
| |
| Torsion generator: | \( -1 \) (order $2$) | magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
sage: UK.torsion_generator()
gp: K.tu[2]
| |
| Fundamental units: | Units are too long to display, but can be downloaded with other data for this field from 'Stored data to gp' link to the right (assuming GRH) | magma: [K!f(g): g in Generators(UK)];
sage: UK.fundamental_units()
gp: K.fu
| |
| Regulator: | \( 22770985.3263 \) (assuming GRH) | magma: Regulator(K);
sage: K.regulator()
gp: K.reg
|
Galois group
| A non-solvable group of order 28800 |
| The 41 conjugacy class representatives for t20n547 |
| Character table for t20n547 is not computed |
Intermediate fields
| \(\Q(\sqrt{3}) \), 4.4.13824.1, 10.2.5283615080448.1 |
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Sibling fields
| Degree 20 sibling: | data not computed |
| Degree 24 siblings: | data not computed |
| Degree 40 siblings: | data not computed |
Frobenius cycle types
| $p$ | 2 | 3 | 5 | 7 | 11 | 13 | 17 | 19 | 23 | 29 | 31 | 37 | 41 | 43 | 47 | 53 | 59 |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Cycle type | R | R | ${\href{/LocalNumberField/5.6.0.1}{6} }^{2}{,}\,{\href{/LocalNumberField/5.2.0.1}{2} }^{4}$ | $20$ | ${\href{/LocalNumberField/11.6.0.1}{6} }{,}\,{\href{/LocalNumberField/11.4.0.1}{4} }^{2}{,}\,{\href{/LocalNumberField/11.2.0.1}{2} }^{2}{,}\,{\href{/LocalNumberField/11.1.0.1}{1} }^{2}$ | ${\href{/LocalNumberField/13.6.0.1}{6} }{,}\,{\href{/LocalNumberField/13.3.0.1}{3} }^{2}{,}\,{\href{/LocalNumberField/13.2.0.1}{2} }^{4}$ | $20$ | ${\href{/LocalNumberField/19.10.0.1}{10} }^{2}$ | ${\href{/LocalNumberField/23.10.0.1}{10} }{,}\,{\href{/LocalNumberField/23.6.0.1}{6} }{,}\,{\href{/LocalNumberField/23.2.0.1}{2} }^{2}$ | ${\href{/LocalNumberField/29.10.0.1}{10} }^{2}$ | ${\href{/LocalNumberField/31.12.0.1}{12} }{,}\,{\href{/LocalNumberField/31.4.0.1}{4} }^{2}$ | ${\href{/LocalNumberField/37.4.0.1}{4} }^{4}{,}\,{\href{/LocalNumberField/37.2.0.1}{2} }{,}\,{\href{/LocalNumberField/37.1.0.1}{1} }^{2}$ | ${\href{/LocalNumberField/41.12.0.1}{12} }{,}\,{\href{/LocalNumberField/41.4.0.1}{4} }^{2}$ | ${\href{/LocalNumberField/43.10.0.1}{10} }^{2}$ | ${\href{/LocalNumberField/47.10.0.1}{10} }{,}\,{\href{/LocalNumberField/47.6.0.1}{6} }{,}\,{\href{/LocalNumberField/47.2.0.1}{2} }^{2}$ | ${\href{/LocalNumberField/53.4.0.1}{4} }^{4}{,}\,{\href{/LocalNumberField/53.2.0.1}{2} }^{2}$ | ${\href{/LocalNumberField/59.6.0.1}{6} }{,}\,{\href{/LocalNumberField/59.4.0.1}{4} }^{2}{,}\,{\href{/LocalNumberField/59.2.0.1}{2} }^{2}{,}\,{\href{/LocalNumberField/59.1.0.1}{1} }^{2}$ |
In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
| $p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
|---|---|---|---|---|---|---|---|
| 2 | Data not computed | ||||||
| $3$ | 3.8.6.2 | $x^{8} + 4 x^{7} + 14 x^{6} + 28 x^{5} + 43 x^{4} + 44 x^{3} + 110 x^{2} + 92 x + 22$ | $4$ | $2$ | $6$ | $D_4$ | $[\ ]_{4}^{2}$ |
| 3.12.15.11 | $x^{12} - 3 x^{11} + 3 x^{10} + 3 x^{9} + 3 x^{8} - 3 x^{7} + 3 x^{6} - 3 x^{4} - 3$ | $12$ | $1$ | $15$ | 12T42 | $[3/2]_{4}^{6}$ | |