Normalized defining polynomial
\( x^{20} - 3 x^{19} - 27 x^{18} + 106 x^{17} - 601 x^{16} + 3341 x^{15} - 6012 x^{14} + 6576 x^{13} - 5535 x^{12} - 105035 x^{11} + 390034 x^{10} - 280392 x^{9} - 517848 x^{8} + 2687586 x^{7} - 10762044 x^{6} + 17754166 x^{5} + 10928294 x^{4} - 81796339 x^{3} + 122959250 x^{2} - 84055216 x + 22936847 \)
Invariants
| Degree: | $20$ | magma: Degree(K);
sage: K.degree()
gp: poldegree(K.pol)
| |
| Signature: | $[4, 8]$ | magma: Signature(K);
sage: K.signature()
gp: K.sign
| |
| Discriminant: | \(92832438244258564416940225807466334869=11^{16}\cdot 23^{2}\cdot 1563101^{3}\) | magma: Discriminant(Integers(K));
sage: K.disc()
gp: K.disc
| |
| Root discriminant: | $79.14$ | magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
sage: (K.disc().abs())^(1./K.degree())
gp: abs(K.disc)^(1/poldegree(K.pol))
| |
| Ramified primes: | $11, 23, 1563101$ | magma: PrimeDivisors(Discriminant(Integers(K)));
sage: K.disc().support()
gp: factor(abs(K.disc))[,1]~
| |
| This field is not Galois over $\Q$. | |||
| This is not a CM field. | |||
Integral basis (with respect to field generator \(a\))
$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $a^{6}$, $a^{7}$, $a^{8}$, $a^{9}$, $a^{10}$, $a^{11}$, $a^{12}$, $a^{13}$, $a^{14}$, $\frac{1}{5} a^{15} + \frac{1}{5} a^{13} - \frac{1}{5} a^{12} - \frac{1}{5} a^{9} - \frac{1}{5} a^{8} + \frac{2}{5} a^{7} - \frac{2}{5} a^{6} - \frac{2}{5} a^{5} - \frac{2}{5} a^{4} + \frac{2}{5} a^{2} + \frac{1}{5} a - \frac{1}{5}$, $\frac{1}{5} a^{16} + \frac{1}{5} a^{14} - \frac{1}{5} a^{13} - \frac{1}{5} a^{10} - \frac{1}{5} a^{9} + \frac{2}{5} a^{8} - \frac{2}{5} a^{7} - \frac{2}{5} a^{6} - \frac{2}{5} a^{5} + \frac{2}{5} a^{3} + \frac{1}{5} a^{2} - \frac{1}{5} a$, $\frac{1}{5} a^{17} - \frac{1}{5} a^{14} - \frac{1}{5} a^{13} + \frac{1}{5} a^{12} - \frac{1}{5} a^{11} - \frac{1}{5} a^{10} - \frac{2}{5} a^{9} - \frac{1}{5} a^{8} + \frac{1}{5} a^{7} + \frac{2}{5} a^{5} - \frac{1}{5} a^{4} + \frac{1}{5} a^{3} + \frac{2}{5} a^{2} - \frac{1}{5} a + \frac{1}{5}$, $\frac{1}{5} a^{18} - \frac{1}{5} a^{14} + \frac{2}{5} a^{13} - \frac{2}{5} a^{12} - \frac{1}{5} a^{11} - \frac{2}{5} a^{10} - \frac{2}{5} a^{9} + \frac{2}{5} a^{7} + \frac{2}{5} a^{5} - \frac{1}{5} a^{4} + \frac{2}{5} a^{3} + \frac{1}{5} a^{2} + \frac{2}{5} a - \frac{1}{5}$, $\frac{1}{55762856215851367773357213373762153568753065252099239822067605860165} a^{19} - \frac{2996480986352889961104743308196473080983631771391252981613062162206}{55762856215851367773357213373762153568753065252099239822067605860165} a^{18} + \frac{1979388732308646523178892946667476923057751461264820532934760798771}{55762856215851367773357213373762153568753065252099239822067605860165} a^{17} - \frac{5336063857575947774540869373495394589519831167999374780355358134064}{55762856215851367773357213373762153568753065252099239822067605860165} a^{16} - \frac{1036677115021966805441149240921051853931268456620114345326905721524}{11152571243170273554671442674752430713750613050419847964413521172033} a^{15} - \frac{16614658780241799568863629905702386666745162731246811784170367220737}{55762856215851367773357213373762153568753065252099239822067605860165} a^{14} + \frac{823131326082216447146765264907412686807835638486796502706238656396}{11152571243170273554671442674752430713750613050419847964413521172033} a^{13} - \frac{24174754262129797078727011675503493032667582619402025895709432773259}{55762856215851367773357213373762153568753065252099239822067605860165} a^{12} - \frac{12074111802520518539915491940690444617318350195633235733003384203717}{55762856215851367773357213373762153568753065252099239822067605860165} a^{11} + \frac{13095727539871942929963295904357942548623389480147532110867082993323}{55762856215851367773357213373762153568753065252099239822067605860165} a^{10} - \frac{2348484884410988116246707134576280194260008675042755923295809083847}{55762856215851367773357213373762153568753065252099239822067605860165} a^{9} + \frac{3880588908208630959857101094440682326860058304124808291691050541767}{55762856215851367773357213373762153568753065252099239822067605860165} a^{8} - \frac{11976484679592149468535209935035566633900989099758437853838620308921}{55762856215851367773357213373762153568753065252099239822067605860165} a^{7} + \frac{15731167721825750018363144007671986795444385259469047220649730109938}{55762856215851367773357213373762153568753065252099239822067605860165} a^{6} + \frac{1451215778001803103961944776189879968953021939281849330452985406817}{11152571243170273554671442674752430713750613050419847964413521172033} a^{5} + \frac{2440717968500845708348124248237715298507418090318983440020207635626}{11152571243170273554671442674752430713750613050419847964413521172033} a^{4} - \frac{16767837578772320518170214430621971924508153589729268097318173824678}{55762856215851367773357213373762153568753065252099239822067605860165} a^{3} - \frac{16455393770055531584187213573436453078602820822627214033552725712189}{55762856215851367773357213373762153568753065252099239822067605860165} a^{2} + \frac{15940140793792076726100729155993312333763118841489667981374994705236}{55762856215851367773357213373762153568753065252099239822067605860165} a - \frac{11814651577117787845089373562003013771294124519199287446890775207659}{55762856215851367773357213373762153568753065252099239822067605860165}$
Class group and class number
Trivial group, which has order $1$ (assuming GRH)
Unit group
| Rank: | $11$ | magma: UnitRank(K);
sage: UK.rank()
gp: K.fu
| |
| Torsion generator: | \( -1 \) (order $2$) | magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
sage: UK.torsion_generator()
gp: K.tu[2]
| |
| Fundamental units: | Units are too long to display, but can be downloaded with other data for this field from 'Stored data to gp' link to the right (assuming GRH) | magma: [K!f(g): g in Generators(UK)];
sage: UK.fundamental_units()
gp: K.fu
| |
| Regulator: | \( 110677029457 \) (assuming GRH) | magma: Regulator(K);
sage: K.regulator()
gp: K.reg
|
Galois group
| A solvable group of order 5120 |
| The 224 conjugacy class representatives for t20n335 are not computed |
| Character table for t20n335 is not computed |
Intermediate fields
| \(\Q(\zeta_{11})^+\), 10.10.335064581249981.1 |
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Sibling fields
Frobenius cycle types
| $p$ | 2 | 3 | 5 | 7 | 11 | 13 | 17 | 19 | 23 | 29 | 31 | 37 | 41 | 43 | 47 | 53 | 59 |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Cycle type | $20$ | $20$ | ${\href{/LocalNumberField/5.5.0.1}{5} }^{4}$ | ${\href{/LocalNumberField/7.5.0.1}{5} }^{4}$ | R | $20$ | ${\href{/LocalNumberField/17.5.0.1}{5} }^{4}$ | ${\href{/LocalNumberField/19.5.0.1}{5} }^{4}$ | R | ${\href{/LocalNumberField/29.5.0.1}{5} }^{4}$ | ${\href{/LocalNumberField/31.5.0.1}{5} }^{4}$ | ${\href{/LocalNumberField/37.5.0.1}{5} }^{4}$ | $20$ | ${\href{/LocalNumberField/43.4.0.1}{4} }^{3}{,}\,{\href{/LocalNumberField/43.1.0.1}{1} }^{8}$ | $20$ | ${\href{/LocalNumberField/53.10.0.1}{10} }^{2}$ | $20$ |
In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
| $p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
|---|---|---|---|---|---|---|---|
| $11$ | 11.10.8.5 | $x^{10} - 2321 x^{5} + 2033647$ | $5$ | $2$ | $8$ | $C_{10}$ | $[\ ]_{5}^{2}$ |
| 11.10.8.5 | $x^{10} - 2321 x^{5} + 2033647$ | $5$ | $2$ | $8$ | $C_{10}$ | $[\ ]_{5}^{2}$ | |
| $23$ | $\Q_{23}$ | $x + 2$ | $1$ | $1$ | $0$ | Trivial | $[\ ]$ |
| $\Q_{23}$ | $x + 2$ | $1$ | $1$ | $0$ | Trivial | $[\ ]$ | |
| $\Q_{23}$ | $x + 2$ | $1$ | $1$ | $0$ | Trivial | $[\ ]$ | |
| $\Q_{23}$ | $x + 2$ | $1$ | $1$ | $0$ | Trivial | $[\ ]$ | |
| 23.2.1.2 | $x^{2} + 46$ | $2$ | $1$ | $1$ | $C_2$ | $[\ ]_{2}$ | |
| 23.2.1.2 | $x^{2} + 46$ | $2$ | $1$ | $1$ | $C_2$ | $[\ ]_{2}$ | |
| 23.4.0.1 | $x^{4} - x + 11$ | $1$ | $4$ | $0$ | $C_4$ | $[\ ]^{4}$ | |
| 23.4.0.1 | $x^{4} - x + 11$ | $1$ | $4$ | $0$ | $C_4$ | $[\ ]^{4}$ | |
| 23.4.0.1 | $x^{4} - x + 11$ | $1$ | $4$ | $0$ | $C_4$ | $[\ ]^{4}$ | |
| 1563101 | Data not computed | ||||||