Normalized defining polynomial
\( x^{20} - x^{18} - 109 x^{16} + 149 x^{14} - 2014 x^{12} - 36365 x^{10} + 127585 x^{8} - 1005950 x^{6} + 733025 x^{4} + 67500 x^{2} + 50000 \)
Invariants
| Degree: | $20$ | magma: Degree(K);
sage: K.degree()
gp: poldegree(K.pol)
| |
| Signature: | $[4, 8]$ | magma: Signature(K);
sage: K.signature()
gp: K.sign
| |
| Discriminant: | \(9230125234163877365792000000000000000=2^{20}\cdot 5^{15}\cdot 19^{16}\) | magma: Discriminant(Integers(K));
sage: K.disc()
gp: K.disc
| |
| Root discriminant: | $70.51$ | magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
sage: (K.disc().abs())^(1./K.degree())
gp: abs(K.disc)^(1/poldegree(K.pol))
| |
| Ramified primes: | $2, 5, 19$ | magma: PrimeDivisors(Discriminant(Integers(K)));
sage: K.disc().support()
gp: factor(abs(K.disc))[,1]~
| |
| This field is not Galois over $\Q$. | |||
| This is not a CM field. | |||
Integral basis (with respect to field generator \(a\))
$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $a^{6}$, $a^{7}$, $a^{8}$, $a^{9}$, $a^{10}$, $a^{11}$, $\frac{1}{5} a^{12} - \frac{1}{5} a^{10} + \frac{1}{5} a^{8} - \frac{1}{5} a^{6} + \frac{1}{5} a^{4}$, $\frac{1}{10} a^{13} + \frac{2}{5} a^{11} - \frac{2}{5} a^{9} - \frac{1}{10} a^{7} + \frac{1}{10} a^{5} - \frac{1}{2} a^{3} - \frac{1}{2} a$, $\frac{1}{20} a^{14} - \frac{1}{2} a^{10} - \frac{1}{4} a^{8} - \frac{1}{4} a^{6} - \frac{9}{20} a^{4} + \frac{1}{4} a^{2}$, $\frac{1}{100} a^{15} + \frac{1}{25} a^{13} + \frac{3}{50} a^{11} - \frac{41}{100} a^{9} - \frac{49}{100} a^{7} - \frac{1}{20} a^{5} + \frac{1}{20} a^{3}$, $\frac{1}{5700} a^{16} - \frac{23}{2850} a^{14} - \frac{187}{2850} a^{12} + \frac{613}{1900} a^{10} + \frac{1921}{5700} a^{8} + \frac{25}{228} a^{6} + \frac{1}{76} a^{4} + \frac{15}{38} a^{2} - \frac{22}{57}$, $\frac{1}{5700} a^{17} + \frac{11}{5700} a^{15} - \frac{73}{2850} a^{13} + \frac{727}{1900} a^{11} - \frac{104}{1425} a^{9} - \frac{542}{1425} a^{7} - \frac{7}{190} a^{5} + \frac{169}{380} a^{3} - \frac{22}{57} a$, $\frac{1}{13137516879319917006913500} a^{18} - \frac{109255244309240490269}{3284379219829979251728375} a^{16} + \frac{677603995817475657479}{3284379219829979251728375} a^{14} - \frac{1153462523441771570749201}{13137516879319917006913500} a^{12} + \frac{318500976585395017018711}{13137516879319917006913500} a^{10} + \frac{232059015715361672408719}{875834458621327800460900} a^{8} + \frac{526599275775527417053747}{2627503375863983401382700} a^{6} - \frac{26187906337942557076301}{87583445862132780046090} a^{4} - \frac{40627632354161818057367}{262750337586398340138270} a^{2} + \frac{6635001177105407686682}{26275033758639834013827}$, $\frac{1}{131375168793199170069135000} a^{19} + \frac{11087116636201561729199}{131375168793199170069135000} a^{17} + \frac{129475929731093663222941}{131375168793199170069135000} a^{15} - \frac{69494413046604209382217}{43791722931066390023045000} a^{13} - \frac{8293704451164459618307357}{65687584396599585034567500} a^{11} + \frac{8145379600472746730619917}{26275033758639834013827000} a^{9} + \frac{2713916470245234623862489}{8758344586213278004609000} a^{7} + \frac{37590470474983906464678}{218958614655331950115225} a^{5} - \frac{2591212436915234095856629}{5255006751727966802765400} a^{3} - \frac{4689749205377595370957}{17516689172426556009218} a$
Class group and class number
Trivial group, which has order $1$ (assuming GRH)
Unit group
| Rank: | $11$ | magma: UnitRank(K);
sage: UK.rank()
gp: K.fu
| |
| Torsion generator: | \( -1 \) (order $2$) | magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
sage: UK.torsion_generator()
gp: K.tu[2]
| |
| Fundamental units: | Units are too long to display, but can be downloaded with other data for this field from 'Stored data to gp' link to the right (assuming GRH) | magma: [K!f(g): g in Generators(UK)];
sage: UK.fundamental_units()
gp: K.fu
| |
| Regulator: | \( 218846902353.9545 \) (assuming GRH) | magma: Regulator(K);
sage: K.regulator()
gp: K.reg
|
Galois group
$C_2\times F_5$ (as 20T9):
| A solvable group of order 40 |
| The 10 conjugacy class representatives for $C_2\times F_5$ |
| Character table for $C_2\times F_5$ |
Intermediate fields
| \(\Q(\sqrt{5}) \), \(\Q(\zeta_{20})^+\), 5.1.16290125.1, 10.2.1326840862578125.1 |
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Sibling fields
| Galois closure: | data not computed |
| Degree 10 siblings: | data not computed |
| Degree 20 sibling: | data not computed |
Frobenius cycle types
| $p$ | 2 | 3 | 5 | 7 | 11 | 13 | 17 | 19 | 23 | 29 | 31 | 37 | 41 | 43 | 47 | 53 | 59 |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Cycle type | R | ${\href{/LocalNumberField/3.4.0.1}{4} }^{5}$ | R | ${\href{/LocalNumberField/7.4.0.1}{4} }^{5}$ | ${\href{/LocalNumberField/11.10.0.1}{10} }^{2}$ | ${\href{/LocalNumberField/13.4.0.1}{4} }^{5}$ | ${\href{/LocalNumberField/17.4.0.1}{4} }^{5}$ | R | ${\href{/LocalNumberField/23.4.0.1}{4} }^{5}$ | ${\href{/LocalNumberField/29.2.0.1}{2} }^{10}$ | ${\href{/LocalNumberField/31.10.0.1}{10} }^{2}$ | ${\href{/LocalNumberField/37.4.0.1}{4} }^{5}$ | ${\href{/LocalNumberField/41.1.0.1}{1} }^{20}$ | ${\href{/LocalNumberField/43.4.0.1}{4} }^{5}$ | ${\href{/LocalNumberField/47.4.0.1}{4} }^{5}$ | ${\href{/LocalNumberField/53.4.0.1}{4} }^{5}$ | ${\href{/LocalNumberField/59.2.0.1}{2} }^{8}{,}\,{\href{/LocalNumberField/59.1.0.1}{1} }^{4}$ |
In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
| $p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
|---|---|---|---|---|---|---|---|
| $2$ | 2.4.4.2 | $x^{4} - x^{2} + 5$ | $2$ | $2$ | $4$ | $C_4$ | $[2]^{2}$ |
| 2.8.8.1 | $x^{8} + 28 x^{4} + 144$ | $2$ | $4$ | $8$ | $C_4\times C_2$ | $[2]^{4}$ | |
| 2.8.8.1 | $x^{8} + 28 x^{4} + 144$ | $2$ | $4$ | $8$ | $C_4\times C_2$ | $[2]^{4}$ | |
| $5$ | 5.4.3.2 | $x^{4} - 20$ | $4$ | $1$ | $3$ | $C_4$ | $[\ ]_{4}$ |
| 5.4.3.2 | $x^{4} - 20$ | $4$ | $1$ | $3$ | $C_4$ | $[\ ]_{4}$ | |
| 5.4.3.2 | $x^{4} - 20$ | $4$ | $1$ | $3$ | $C_4$ | $[\ ]_{4}$ | |
| 5.4.3.2 | $x^{4} - 20$ | $4$ | $1$ | $3$ | $C_4$ | $[\ ]_{4}$ | |
| 5.4.3.2 | $x^{4} - 20$ | $4$ | $1$ | $3$ | $C_4$ | $[\ ]_{4}$ | |
| $19$ | 19.5.4.1 | $x^{5} - 19$ | $5$ | $1$ | $4$ | $D_{5}$ | $[\ ]_{5}^{2}$ |
| 19.5.4.1 | $x^{5} - 19$ | $5$ | $1$ | $4$ | $D_{5}$ | $[\ ]_{5}^{2}$ | |
| 19.5.4.1 | $x^{5} - 19$ | $5$ | $1$ | $4$ | $D_{5}$ | $[\ ]_{5}^{2}$ | |
| 19.5.4.1 | $x^{5} - 19$ | $5$ | $1$ | $4$ | $D_{5}$ | $[\ ]_{5}^{2}$ |