Normalized defining polynomial
\( x^{20} - 4 x^{18} - 848 x^{16} - 5585 x^{14} + 30623 x^{12} - 221780 x^{10} + 621036 x^{8} + 7550244 x^{6} + 13941148 x^{4} + 9414145 x^{2} + 2313441 \)
Invariants
| Degree: | $20$ | magma: Degree(K);
sage: K.degree()
gp: poldegree(K.pol)
| |
| Signature: | $[4, 8]$ | magma: Signature(K);
sage: K.signature()
gp: K.sign
| |
| Discriminant: | \(91958199192000549348526667291494680887296=2^{20}\cdot 13^{8}\cdot 401^{10}\) | magma: Discriminant(Integers(K));
sage: K.disc()
gp: K.disc
| |
| Root discriminant: | $111.73$ | magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
sage: (K.disc().abs())^(1./K.degree())
gp: abs(K.disc)^(1/poldegree(K.pol))
| |
| Ramified primes: | $2, 13, 401$ | magma: PrimeDivisors(Discriminant(Integers(K)));
sage: K.disc().support()
gp: factor(abs(K.disc))[,1]~
| |
| This field is not Galois over $\Q$. | |||
| This is not a CM field. | |||
Integral basis (with respect to field generator \(a\))
$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $a^{6}$, $a^{7}$, $a^{8}$, $a^{9}$, $a^{10}$, $a^{11}$, $\frac{1}{13} a^{12} - \frac{4}{13} a^{10} - \frac{3}{13} a^{8} + \frac{5}{13} a^{6} - \frac{5}{13} a^{4}$, $\frac{1}{13} a^{13} - \frac{4}{13} a^{11} - \frac{3}{13} a^{9} + \frac{5}{13} a^{7} - \frac{5}{13} a^{5}$, $\frac{1}{13} a^{14} - \frac{6}{13} a^{10} + \frac{6}{13} a^{8} + \frac{2}{13} a^{6} + \frac{6}{13} a^{4}$, $\frac{1}{13} a^{15} - \frac{6}{13} a^{11} + \frac{6}{13} a^{9} + \frac{2}{13} a^{7} + \frac{6}{13} a^{5}$, $\frac{1}{169} a^{16} - \frac{4}{169} a^{14} - \frac{3}{169} a^{12} - \frac{8}{169} a^{10} + \frac{34}{169} a^{8} - \frac{4}{13} a^{6} - \frac{3}{13} a^{4}$, $\frac{1}{169} a^{17} - \frac{4}{169} a^{15} - \frac{3}{169} a^{13} - \frac{8}{169} a^{11} + \frac{34}{169} a^{9} - \frac{4}{13} a^{7} - \frac{3}{13} a^{5}$, $\frac{1}{406885279899029079550498611732841} a^{18} + \frac{194678053702095337022008719069}{406885279899029079550498611732841} a^{16} - \frac{7987271670488928531543301416545}{406885279899029079550498611732841} a^{14} - \frac{3092448223301681271579488331780}{406885279899029079550498611732841} a^{12} + \frac{129290578182172794689514228756878}{406885279899029079550498611732841} a^{10} - \frac{8453783538176529201121797075432}{31298867684540698426961431671757} a^{8} + \frac{1756766041906797544201028926915}{31298867684540698426961431671757} a^{6} + \frac{378747855083380452405941777194}{2407605206503130648227802436289} a^{4} - \frac{395113747799367062340978358755}{2407605206503130648227802436289} a^{2} + \frac{91776983480019655744879979458}{185200400500240819094446341253}$, $\frac{1}{3661967519091261715954487505595569} a^{19} - \frac{9435742772310427255889201026087}{3661967519091261715954487505595569} a^{17} + \frac{93132147002642558694024400907593}{3661967519091261715954487505595569} a^{15} - \frac{130695524167967605627653017455097}{3661967519091261715954487505595569} a^{13} + \frac{1270495446064656721949492583557864}{3661967519091261715954487505595569} a^{11} + \frac{65434884834548477222734622206}{281689809160866285842652885045813} a^{9} + \frac{12768245638617104223434193714722}{31298867684540698426961431671757} a^{7} - \frac{287162061435608072567244409206}{2407605206503130648227802436289} a^{5} + \frac{2012491458703763585886824077534}{21668446858528175834050221926601} a^{3} + \frac{647378184980742113028219003217}{1666803604502167371850017071277} a$
Class group and class number
$C_{4}$, which has order $4$ (assuming GRH)
Unit group
| Rank: | $11$ | magma: UnitRank(K);
sage: UK.rank()
gp: K.fu
| |
| Torsion generator: | \( -1 \) (order $2$) | magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
sage: UK.torsion_generator()
gp: K.tu[2]
| |
| Fundamental units: | Units are too long to display, but can be downloaded with other data for this field from 'Stored data to gp' link to the right (assuming GRH) | magma: [K!f(g): g in Generators(UK)];
sage: UK.fundamental_units()
gp: K.fu
| |
| Regulator: | \( 1144370757510 \) (assuming GRH) | magma: Regulator(K);
sage: K.regulator()
gp: K.reg
|
Galois group
| A solvable group of order 5120 |
| The 44 conjugacy class representatives for t20n354 |
| Character table for t20n354 is not computed |
Intermediate fields
| 5.5.160801.1, 10.6.1752300430738169.1 |
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Sibling fields
Frobenius cycle types
| $p$ | 2 | 3 | 5 | 7 | 11 | 13 | 17 | 19 | 23 | 29 | 31 | 37 | 41 | 43 | 47 | 53 | 59 |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Cycle type | R | ${\href{/LocalNumberField/3.8.0.1}{8} }{,}\,{\href{/LocalNumberField/3.4.0.1}{4} }{,}\,{\href{/LocalNumberField/3.2.0.1}{2} }^{4}$ | ${\href{/LocalNumberField/5.10.0.1}{10} }^{2}$ | ${\href{/LocalNumberField/7.5.0.1}{5} }^{4}$ | ${\href{/LocalNumberField/11.5.0.1}{5} }^{4}$ | R | ${\href{/LocalNumberField/17.8.0.1}{8} }{,}\,{\href{/LocalNumberField/17.4.0.1}{4} }^{3}$ | ${\href{/LocalNumberField/19.4.0.1}{4} }^{4}{,}\,{\href{/LocalNumberField/19.2.0.1}{2} }^{2}$ | ${\href{/LocalNumberField/23.4.0.1}{4} }^{3}{,}\,{\href{/LocalNumberField/23.2.0.1}{2} }^{3}{,}\,{\href{/LocalNumberField/23.1.0.1}{1} }^{2}$ | ${\href{/LocalNumberField/29.5.0.1}{5} }^{4}$ | ${\href{/LocalNumberField/31.4.0.1}{4} }^{3}{,}\,{\href{/LocalNumberField/31.2.0.1}{2} }^{3}{,}\,{\href{/LocalNumberField/31.1.0.1}{1} }^{2}$ | ${\href{/LocalNumberField/37.2.0.1}{2} }^{10}$ | ${\href{/LocalNumberField/41.10.0.1}{10} }^{2}$ | ${\href{/LocalNumberField/43.10.0.1}{10} }^{2}$ | ${\href{/LocalNumberField/47.5.0.1}{5} }^{4}$ | ${\href{/LocalNumberField/53.4.0.1}{4} }^{3}{,}\,{\href{/LocalNumberField/53.2.0.1}{2} }^{3}{,}\,{\href{/LocalNumberField/53.1.0.1}{1} }^{2}$ | ${\href{/LocalNumberField/59.8.0.1}{8} }{,}\,{\href{/LocalNumberField/59.4.0.1}{4} }{,}\,{\href{/LocalNumberField/59.2.0.1}{2} }^{4}$ |
In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
| $p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
|---|---|---|---|---|---|---|---|
| $2$ | 2.10.10.13 | $x^{10} - 15 x^{8} + 26 x^{6} - 22 x^{4} + 37 x^{2} - 59$ | $2$ | $5$ | $10$ | $C_2 \times (C_2^4 : C_5)$ | $[2, 2, 2, 2, 2]^{5}$ |
| 2.10.10.13 | $x^{10} - 15 x^{8} + 26 x^{6} - 22 x^{4} + 37 x^{2} - 59$ | $2$ | $5$ | $10$ | $C_2 \times (C_2^4 : C_5)$ | $[2, 2, 2, 2, 2]^{5}$ | |
| $13$ | 13.2.0.1 | $x^{2} - x + 2$ | $1$ | $2$ | $0$ | $C_2$ | $[\ ]^{2}$ |
| 13.2.0.1 | $x^{2} - x + 2$ | $1$ | $2$ | $0$ | $C_2$ | $[\ ]^{2}$ | |
| 13.4.2.2 | $x^{4} - 13 x^{2} + 338$ | $2$ | $2$ | $2$ | $C_4$ | $[\ ]_{2}^{2}$ | |
| 13.4.0.1 | $x^{4} + x^{2} - x + 2$ | $1$ | $4$ | $0$ | $C_4$ | $[\ ]^{4}$ | |
| 13.8.6.1 | $x^{8} - 13 x^{4} + 2704$ | $4$ | $2$ | $6$ | $C_4\times C_2$ | $[\ ]_{4}^{2}$ | |
| 401 | Data not computed | ||||||