Normalized defining polynomial
\( x^{20} - 6 x^{19} + 7 x^{18} + 3 x^{17} + 47 x^{16} - 124 x^{15} - 152 x^{14} + 297 x^{13} + 41 x^{12} + 242 x^{11} - 1501 x^{10} + 2218 x^{9} - 2653 x^{8} + 3355 x^{7} - 2958 x^{6} + 3458 x^{5} - 5799 x^{4} + 7115 x^{3} - 4093 x^{2} + 980 x - 89 \)
Invariants
| Degree: | $20$ | magma: Degree(K);
sage: K.degree()
gp: poldegree(K.pol)
| |
| Signature: | $[4, 8]$ | magma: Signature(K);
sage: K.signature()
gp: K.sign
| |
| Discriminant: | \(9176208368973513838364876161=673^{2}\cdot 4673^{2}\cdot 5519^{4}\) | magma: Discriminant(Integers(K));
sage: K.disc()
gp: K.disc
| |
| Root discriminant: | $25.01$ | magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
sage: (K.disc().abs())^(1./K.degree())
gp: abs(K.disc)^(1/poldegree(K.pol))
| |
| Ramified primes: | $673, 4673, 5519$ | magma: PrimeDivisors(Discriminant(Integers(K)));
sage: K.disc().support()
gp: factor(abs(K.disc))[,1]~
| |
| This field is not Galois over $\Q$. | |||
| This is not a CM field. | |||
Integral basis (with respect to field generator \(a\))
$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $a^{6}$, $a^{7}$, $a^{8}$, $a^{9}$, $a^{10}$, $a^{11}$, $a^{12}$, $a^{13}$, $a^{14}$, $a^{15}$, $a^{16}$, $a^{17}$, $\frac{1}{7} a^{18} + \frac{1}{7} a^{17} - \frac{1}{7} a^{16} + \frac{2}{7} a^{15} - \frac{1}{7} a^{14} + \frac{3}{7} a^{12} + \frac{3}{7} a^{11} + \frac{3}{7} a^{10} + \frac{1}{7} a^{9} + \frac{1}{7} a^{8} - \frac{2}{7} a^{7} - \frac{1}{7} a^{6} - \frac{3}{7} a^{5} - \frac{3}{7} a^{4} + \frac{3}{7} a^{3} + \frac{2}{7}$, $\frac{1}{1042825286891594199395927018935853697103} a^{19} - \frac{69172471884445362239280060722458250689}{1042825286891594199395927018935853697103} a^{18} - \frac{409955164146649141723414163191004199418}{1042825286891594199395927018935853697103} a^{17} + \frac{114398207472997472071940530170745886774}{1042825286891594199395927018935853697103} a^{16} - \frac{358926761306621522024445897011604336136}{1042825286891594199395927018935853697103} a^{15} + \frac{894373384985016863070541351582456140}{11459618537270265927427769438855535133} a^{14} + \frac{470663320874244735782570011704170244991}{1042825286891594199395927018935853697103} a^{13} - \frac{269733898881509271822799277615196354315}{1042825286891594199395927018935853697103} a^{12} - \frac{112995186471105303417701967666090104457}{1042825286891594199395927018935853697103} a^{11} - \frac{313260302739070209571794335928750809186}{1042825286891594199395927018935853697103} a^{10} - \frac{326672776395975960579147043054138083110}{1042825286891594199395927018935853697103} a^{9} + \frac{253995146032895546700917379431920986269}{1042825286891594199395927018935853697103} a^{8} + \frac{32380133593027679854238070910765701697}{80217329760891861491994386071988745931} a^{7} + \frac{287819204283614303222992503149187472053}{1042825286891594199395927018935853697103} a^{6} + \frac{190996417572406296021129806644577974379}{1042825286891594199395927018935853697103} a^{5} + \frac{261965025236623239162834707386327889019}{1042825286891594199395927018935853697103} a^{4} + \frac{56126159603678062779512483410026158825}{148975040984513457056561002705121956729} a^{3} + \frac{694228868086477264847319092362461880}{11459618537270265927427769438855535133} a^{2} - \frac{288389286191291602075031580288771296505}{1042825286891594199395927018935853697103} a - \frac{9851395272498953682168129178088572151}{148975040984513457056561002705121956729}$
Class group and class number
Trivial group, which has order $1$ (assuming GRH)
Unit group
| Rank: | $11$ | magma: UnitRank(K);
sage: UK.rank()
gp: K.fu
| |
| Torsion generator: | \( -1 \) (order $2$) | magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
sage: UK.torsion_generator()
gp: K.tu[2]
| |
| Fundamental units: | Units are too long to display, but can be downloaded with other data for this field from 'Stored data to gp' link to the right (assuming GRH) | magma: [K!f(g): g in Generators(UK)];
sage: UK.fundamental_units()
gp: K.fu
| |
| Regulator: | \( 973460.436651 \) (assuming GRH) | magma: Regulator(K);
sage: K.regulator()
gp: K.reg
|
Galois group
| A non-solvable group of order 122880 |
| The 252 conjugacy class representatives for t20n799 are not computed |
| Character table for t20n799 is not computed |
Intermediate fields
| 5.3.5519.1, 10.6.20499149953.1, 10.2.95792527730369.1, 10.2.142336593953.1 |
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Sibling fields
Frobenius cycle types
| $p$ | 2 | 3 | 5 | 7 | 11 | 13 | 17 | 19 | 23 | 29 | 31 | 37 | 41 | 43 | 47 | 53 | 59 |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Cycle type | ${\href{/LocalNumberField/2.5.0.1}{5} }^{4}$ | ${\href{/LocalNumberField/3.10.0.1}{10} }^{2}$ | ${\href{/LocalNumberField/5.10.0.1}{10} }^{2}$ | ${\href{/LocalNumberField/7.4.0.1}{4} }^{2}{,}\,{\href{/LocalNumberField/7.2.0.1}{2} }^{6}$ | ${\href{/LocalNumberField/11.10.0.1}{10} }^{2}$ | ${\href{/LocalNumberField/13.8.0.1}{8} }^{2}{,}\,{\href{/LocalNumberField/13.2.0.1}{2} }^{2}$ | ${\href{/LocalNumberField/17.6.0.1}{6} }^{2}{,}\,{\href{/LocalNumberField/17.4.0.1}{4} }^{2}$ | ${\href{/LocalNumberField/19.4.0.1}{4} }^{4}{,}\,{\href{/LocalNumberField/19.2.0.1}{2} }^{2}$ | ${\href{/LocalNumberField/23.6.0.1}{6} }^{2}{,}\,{\href{/LocalNumberField/23.2.0.1}{2} }^{4}$ | ${\href{/LocalNumberField/29.6.0.1}{6} }^{2}{,}\,{\href{/LocalNumberField/29.2.0.1}{2} }^{4}$ | ${\href{/LocalNumberField/31.4.0.1}{4} }^{4}{,}\,{\href{/LocalNumberField/31.2.0.1}{2} }^{2}$ | ${\href{/LocalNumberField/37.8.0.1}{8} }^{2}{,}\,{\href{/LocalNumberField/37.2.0.1}{2} }^{2}$ | ${\href{/LocalNumberField/41.10.0.1}{10} }^{2}$ | ${\href{/LocalNumberField/43.6.0.1}{6} }^{2}{,}\,{\href{/LocalNumberField/43.4.0.1}{4} }^{2}$ | ${\href{/LocalNumberField/47.10.0.1}{10} }^{2}$ | ${\href{/LocalNumberField/53.6.0.1}{6} }^{2}{,}\,{\href{/LocalNumberField/53.2.0.1}{2} }^{4}$ | ${\href{/LocalNumberField/59.10.0.1}{10} }^{2}$ |
Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
| $p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
|---|---|---|---|---|---|---|---|
| 673 | Data not computed | ||||||
| 4673 | Data not computed | ||||||
| 5519 | Data not computed | ||||||