Normalized defining polynomial
\( x^{20} - 8 x^{19} + 60 x^{18} - 494 x^{17} + 1261 x^{16} - 5153 x^{15} + 24512 x^{14} + 51422 x^{13} - 78134 x^{12} + 264162 x^{11} - 7087777 x^{10} - 8047339 x^{9} + 54599027 x^{8} + 248179146 x^{7} - 84208667 x^{6} - 1275639545 x^{5} - 814155270 x^{4} + 2185244296 x^{3} + 4978153918 x^{2} - 9067788804 x + 8276198479 \)
Invariants
| Degree: | $20$ | magma: Degree(K);
sage: K.degree()
gp: poldegree(K.pol)
| |
| Signature: | $[4, 8]$ | magma: Signature(K);
sage: K.signature()
gp: K.sign
| |
| Discriminant: | \(91503142838236987962684180287701981512121=67^{6}\cdot 97^{2}\cdot 401^{10}\) | magma: Discriminant(Integers(K));
sage: K.disc()
gp: K.disc
| |
| Root discriminant: | $111.70$ | magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
sage: (K.disc().abs())^(1./K.degree())
gp: abs(K.disc)^(1/poldegree(K.pol))
| |
| Ramified primes: | $67, 97, 401$ | magma: PrimeDivisors(Discriminant(Integers(K)));
sage: K.disc().support()
gp: factor(abs(K.disc))[,1]~
| |
| This field is not Galois over $\Q$. | |||
| This is not a CM field. | |||
Integral basis (with respect to field generator \(a\))
$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $a^{6}$, $a^{7}$, $a^{8}$, $a^{9}$, $a^{10}$, $a^{11}$, $a^{12}$, $a^{13}$, $a^{14}$, $\frac{1}{2} a^{15} - \frac{1}{2} a^{12} - \frac{1}{2} a^{11} - \frac{1}{2} a^{9} - \frac{1}{2} a^{8} - \frac{1}{2} a^{7} - \frac{1}{2} a^{4} - \frac{1}{2} a^{2} - \frac{1}{2}$, $\frac{1}{2} a^{16} - \frac{1}{2} a^{13} - \frac{1}{2} a^{12} - \frac{1}{2} a^{10} - \frac{1}{2} a^{9} - \frac{1}{2} a^{8} - \frac{1}{2} a^{5} - \frac{1}{2} a^{3} - \frac{1}{2} a$, $\frac{1}{134} a^{17} + \frac{17}{134} a^{16} + \frac{31}{134} a^{15} + \frac{3}{134} a^{14} - \frac{12}{67} a^{13} - \frac{27}{67} a^{12} - \frac{18}{67} a^{11} + \frac{30}{67} a^{10} + \frac{49}{134} a^{9} - \frac{6}{67} a^{8} + \frac{31}{134} a^{7} - \frac{31}{134} a^{6} - \frac{21}{134} a^{5} - \frac{1}{67} a^{4} - \frac{41}{134} a^{3} + \frac{4}{67} a^{2} + \frac{35}{134} a + \frac{35}{134}$, $\frac{1}{134} a^{18} + \frac{5}{67} a^{16} + \frac{6}{67} a^{15} + \frac{59}{134} a^{14} - \frac{24}{67} a^{13} - \frac{28}{67} a^{12} + \frac{1}{67} a^{11} - \frac{33}{134} a^{10} - \frac{41}{134} a^{9} - \frac{33}{134} a^{8} - \frac{11}{67} a^{7} - \frac{15}{67} a^{6} - \frac{47}{134} a^{5} - \frac{7}{134} a^{4} + \frac{35}{134} a^{3} + \frac{33}{134} a^{2} - \frac{12}{67} a - \frac{59}{134}$, $\frac{1}{517256245124830525352504240213673514911958898769056198660413083617362773996263148318912349644382954} a^{19} + \frac{1297246520433764814347241927903974699720508695826798689586087504680386490105696680974637925726695}{517256245124830525352504240213673514911958898769056198660413083617362773996263148318912349644382954} a^{18} + \frac{846410460228668048803850959444541091061913507657013268313957997614020366951275805379965199855550}{258628122562415262676252120106836757455979449384528099330206541808681386998131574159456174822191477} a^{17} - \frac{43555836347765089503076515637595243830288268594263963825071003155032077842379303805835148668261144}{258628122562415262676252120106836757455979449384528099330206541808681386998131574159456174822191477} a^{16} + \frac{54603295514466923489885371052505603731869692610053827885232435772380865171988670122965651077516343}{517256245124830525352504240213673514911958898769056198660413083617362773996263148318912349644382954} a^{15} + \frac{60638471429744290719753387981784306537390633375223817539744111178989914792833682613775985811623189}{517256245124830525352504240213673514911958898769056198660413083617362773996263148318912349644382954} a^{14} - \frac{177219529262898201137559221221814718331773088284903701620333770146847524477425959415489640190860}{258628122562415262676252120106836757455979449384528099330206541808681386998131574159456174822191477} a^{13} - \frac{92415177301907373233527884387978437572918134093987864593965812503633295561813862393643819531604208}{258628122562415262676252120106836757455979449384528099330206541808681386998131574159456174822191477} a^{12} + \frac{209653748859970706059908381510057216541282153405946891113993584129964080777412700610304033116090535}{517256245124830525352504240213673514911958898769056198660413083617362773996263148318912349644382954} a^{11} - \frac{86613052573292516172246203303370473165358909635403273279643698868738981653628574659081906286532066}{258628122562415262676252120106836757455979449384528099330206541808681386998131574159456174822191477} a^{10} - \frac{127232155207702914952200562343775398616067463527747200164936016231924189330737702935947199017684974}{258628122562415262676252120106836757455979449384528099330206541808681386998131574159456174822191477} a^{9} + \frac{45045844465092410188056497565215059895367414959467918437342521896802876459435706045145906687259507}{517256245124830525352504240213673514911958898769056198660413083617362773996263148318912349644382954} a^{8} - \frac{46490109717465944460101848624087468998806956980730380521181398784432455733212687699507704608610502}{258628122562415262676252120106836757455979449384528099330206541808681386998131574159456174822191477} a^{7} + \frac{140414022539265751190547312304671103700436368341115437213730482807649558488552181577843722129206943}{517256245124830525352504240213673514911958898769056198660413083617362773996263148318912349644382954} a^{6} + \frac{60303692251218512616791526655727626362009982734652586452712412923315672669027932815432101337530202}{258628122562415262676252120106836757455979449384528099330206541808681386998131574159456174822191477} a^{5} + \frac{120898010966609775815794588578884861020159878492232735977008379816231268839494808443804618420982514}{258628122562415262676252120106836757455979449384528099330206541808681386998131574159456174822191477} a^{4} + \frac{4101274039171581586366967332970083902302606688374844350164488062886042225404229364367243851749278}{11244700980974576638097918265514641628520845625414265188269849643855712478179633659106790209660499} a^{3} - \frac{18855329008980366385443995085748755568649404102332671021800865880736814692979278975249397159729759}{517256245124830525352504240213673514911958898769056198660413083617362773996263148318912349644382954} a^{2} - \frac{141766431182825582344039726622202145517384552381821189659226482685488667140717294302102187936786513}{517256245124830525352504240213673514911958898769056198660413083617362773996263148318912349644382954} a - \frac{205486742031056092306315614120769569086846657835186845538390326139390778650213713509591802172606331}{517256245124830525352504240213673514911958898769056198660413083617362773996263148318912349644382954}$
Class group and class number
$C_{2}\times C_{2}$, which has order $4$ (assuming GRH)
Unit group
| Rank: | $11$ | magma: UnitRank(K);
sage: UK.rank()
gp: K.fu
| |
| Torsion generator: | \( -1 \) (order $2$) | magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
sage: UK.torsion_generator()
gp: K.tu[2]
| |
| Fundamental units: | Units are too long to display, but can be downloaded with other data for this field from 'Stored data to gp' link to the right (assuming GRH) | magma: [K!f(g): g in Generators(UK)];
sage: UK.fundamental_units()
gp: K.fu
| |
| Regulator: | \( 1811104096500 \) (assuming GRH) | magma: Regulator(K);
sage: K.regulator()
gp: K.reg
|
Galois group
| A solvable group of order 5120 |
| The 44 conjugacy class representatives for t20n324 |
| Character table for t20n324 is not computed |
Intermediate fields
| 5.5.160801.1, 10.10.116071900626889.1 |
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Sibling fields
Frobenius cycle types
| $p$ | 2 | 3 | 5 | 7 | 11 | 13 | 17 | 19 | 23 | 29 | 31 | 37 | 41 | 43 | 47 | 53 | 59 |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Cycle type | ${\href{/LocalNumberField/2.5.0.1}{5} }^{4}$ | ${\href{/LocalNumberField/3.8.0.1}{8} }{,}\,{\href{/LocalNumberField/3.4.0.1}{4} }^{2}{,}\,{\href{/LocalNumberField/3.2.0.1}{2} }{,}\,{\href{/LocalNumberField/3.1.0.1}{1} }^{2}$ | ${\href{/LocalNumberField/5.10.0.1}{10} }^{2}$ | ${\href{/LocalNumberField/7.10.0.1}{10} }^{2}$ | ${\href{/LocalNumberField/11.5.0.1}{5} }^{4}$ | ${\href{/LocalNumberField/13.8.0.1}{8} }{,}\,{\href{/LocalNumberField/13.4.0.1}{4} }{,}\,{\href{/LocalNumberField/13.2.0.1}{2} }^{4}$ | ${\href{/LocalNumberField/17.8.0.1}{8} }{,}\,{\href{/LocalNumberField/17.4.0.1}{4} }^{2}{,}\,{\href{/LocalNumberField/17.2.0.1}{2} }{,}\,{\href{/LocalNumberField/17.1.0.1}{1} }^{2}$ | ${\href{/LocalNumberField/19.8.0.1}{8} }{,}\,{\href{/LocalNumberField/19.4.0.1}{4} }{,}\,{\href{/LocalNumberField/19.2.0.1}{2} }^{4}$ | ${\href{/LocalNumberField/23.8.0.1}{8} }{,}\,{\href{/LocalNumberField/23.4.0.1}{4} }{,}\,{\href{/LocalNumberField/23.2.0.1}{2} }^{4}$ | ${\href{/LocalNumberField/29.10.0.1}{10} }^{2}$ | ${\href{/LocalNumberField/31.4.0.1}{4} }^{4}{,}\,{\href{/LocalNumberField/31.2.0.1}{2} }^{2}$ | ${\href{/LocalNumberField/37.4.0.1}{4} }^{2}{,}\,{\href{/LocalNumberField/37.2.0.1}{2} }^{6}$ | ${\href{/LocalNumberField/41.10.0.1}{10} }^{2}$ | ${\href{/LocalNumberField/43.5.0.1}{5} }^{4}$ | ${\href{/LocalNumberField/47.5.0.1}{5} }^{4}$ | ${\href{/LocalNumberField/53.8.0.1}{8} }{,}\,{\href{/LocalNumberField/53.4.0.1}{4} }^{2}{,}\,{\href{/LocalNumberField/53.2.0.1}{2} }{,}\,{\href{/LocalNumberField/53.1.0.1}{1} }^{2}$ | ${\href{/LocalNumberField/59.4.0.1}{4} }^{4}{,}\,{\href{/LocalNumberField/59.2.0.1}{2} }^{2}$ |
Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
| $p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
|---|---|---|---|---|---|---|---|
| $67$ | $\Q_{67}$ | $x + 4$ | $1$ | $1$ | $0$ | Trivial | $[\ ]$ |
| $\Q_{67}$ | $x + 4$ | $1$ | $1$ | $0$ | Trivial | $[\ ]$ | |
| $\Q_{67}$ | $x + 4$ | $1$ | $1$ | $0$ | Trivial | $[\ ]$ | |
| $\Q_{67}$ | $x + 4$ | $1$ | $1$ | $0$ | Trivial | $[\ ]$ | |
| 67.2.0.1 | $x^{2} - x + 12$ | $1$ | $2$ | $0$ | $C_2$ | $[\ ]^{2}$ | |
| 67.2.0.1 | $x^{2} - x + 12$ | $1$ | $2$ | $0$ | $C_2$ | $[\ ]^{2}$ | |
| 67.4.2.1 | $x^{4} + 1541 x^{2} + 646416$ | $2$ | $2$ | $2$ | $C_2^2$ | $[\ ]_{2}^{2}$ | |
| 67.4.2.1 | $x^{4} + 1541 x^{2} + 646416$ | $2$ | $2$ | $2$ | $C_2^2$ | $[\ ]_{2}^{2}$ | |
| 67.4.2.1 | $x^{4} + 1541 x^{2} + 646416$ | $2$ | $2$ | $2$ | $C_2^2$ | $[\ ]_{2}^{2}$ | |
| $97$ | 97.2.0.1 | $x^{2} - x + 5$ | $1$ | $2$ | $0$ | $C_2$ | $[\ ]^{2}$ |
| 97.2.0.1 | $x^{2} - x + 5$ | $1$ | $2$ | $0$ | $C_2$ | $[\ ]^{2}$ | |
| 97.4.0.1 | $x^{4} - x + 23$ | $1$ | $4$ | $0$ | $C_4$ | $[\ ]^{4}$ | |
| 97.4.0.1 | $x^{4} - x + 23$ | $1$ | $4$ | $0$ | $C_4$ | $[\ ]^{4}$ | |
| 97.4.2.2 | $x^{4} - 97 x^{2} + 47045$ | $2$ | $2$ | $2$ | $C_4$ | $[\ ]_{2}^{2}$ | |
| 97.4.0.1 | $x^{4} - x + 23$ | $1$ | $4$ | $0$ | $C_4$ | $[\ ]^{4}$ | |
| 401 | Data not computed | ||||||