Normalized defining polynomial
\( x^{20} - 6 x^{19} + 69 x^{18} - 392 x^{17} + 1721 x^{16} - 6400 x^{15} - 8529 x^{14} - 15865 x^{13} - 292744 x^{12} - 31417 x^{11} + 1827235 x^{10} + 17210930 x^{9} + 52223204 x^{8} + 135136937 x^{7} + 10192854 x^{6} + 308863742 x^{5} + 5041155426 x^{4} + 14711875985 x^{3} + 9284598425 x^{2} + 1411756642 x + 93206090471 \)
Invariants
| Degree: | $20$ | magma: Degree(K);
sage: K.degree()
gp: poldegree(K.pol)
| |
| Signature: | $[4, 8]$ | magma: Signature(K);
sage: K.signature()
gp: K.sign
| |
| Discriminant: | \(91503142838236987962684180287701981512121=67^{6}\cdot 97^{2}\cdot 401^{10}\) | magma: Discriminant(Integers(K));
sage: K.disc()
gp: K.disc
| |
| Root discriminant: | $111.70$ | magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
sage: (K.disc().abs())^(1./K.degree())
gp: abs(K.disc)^(1/poldegree(K.pol))
| |
| Ramified primes: | $67, 97, 401$ | magma: PrimeDivisors(Discriminant(Integers(K)));
sage: K.disc().support()
gp: factor(abs(K.disc))[,1]~
| |
| This field is not Galois over $\Q$. | |||
| This is not a CM field. | |||
Integral basis (with respect to field generator \(a\))
$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $a^{6}$, $a^{7}$, $a^{8}$, $a^{9}$, $a^{10}$, $a^{11}$, $a^{12}$, $a^{13}$, $a^{14}$, $a^{15}$, $a^{16}$, $a^{17}$, $\frac{1}{3} a^{18} - \frac{1}{3} a^{16} + \frac{1}{3} a^{15} + \frac{1}{3} a^{13} + \frac{1}{3} a^{11} - \frac{1}{3} a^{10} + \frac{1}{3} a^{9} - \frac{1}{3} a^{8} + \frac{1}{3} a^{7} + \frac{1}{3} a^{5} + \frac{1}{3} a^{3} + \frac{1}{3} a - \frac{1}{3}$, $\frac{1}{161287216904107936874661705436636944804565497911056049255349744748789793813370107717533999298191025335633779} a^{19} - \frac{1598912677859130214758740853915727578243908925357351415650221321537959566628403285766056023590615568850859}{53762405634702645624887235145545648268188499303685349751783248249596597937790035905844666432730341778544593} a^{18} + \frac{28847067350419103371127655026428930083212477408322053119335052157609966385353257653186415857780491850557759}{161287216904107936874661705436636944804565497911056049255349744748789793813370107717533999298191025335633779} a^{17} + \frac{35177755525446586587105379063089241135304036908642449733864420439858896981592877042009678031143994001567368}{161287216904107936874661705436636944804565497911056049255349744748789793813370107717533999298191025335633779} a^{16} + \frac{26507764127052878911777301339373546589923355359113161451122438104228425553091240506944509462359476709144308}{53762405634702645624887235145545648268188499303685349751783248249596597937790035905844666432730341778544593} a^{15} + \frac{570629020118738560845654633188785651669935498078130545167816028963703098376604685244471751458003862625170}{9487483347300466874980100319802173223797970465356238191491161455811164341962947512796117605775942666801987} a^{14} + \frac{1504599314489718838149509894219448661022799847092395970597395158540797136255715523530178977845319012731561}{53762405634702645624887235145545648268188499303685349751783248249596597937790035905844666432730341778544593} a^{13} - \frac{40220115917830463550095700493140359565756238161399083539088237759255143974993879391091173850471021546475755}{161287216904107936874661705436636944804565497911056049255349744748789793813370107717533999298191025335633779} a^{12} - \frac{21780016169021282702910229219813110438635925452010382126119034676535966789468215195306791447779383229353698}{161287216904107936874661705436636944804565497911056049255349744748789793813370107717533999298191025335633779} a^{11} - \frac{54362516455896723419414553819330559973542662581406837894254839647032972066444090777334436287640768343901674}{161287216904107936874661705436636944804565497911056049255349744748789793813370107717533999298191025335633779} a^{10} + \frac{48739682485048004056177567957386836053233496123073421640596507788571252784608158933698737076498430903128382}{161287216904107936874661705436636944804565497911056049255349744748789793813370107717533999298191025335633779} a^{9} + \frac{25477318231718354061544675118330441589251469619393881474907855175057292509105456738480900064232213210239499}{161287216904107936874661705436636944804565497911056049255349744748789793813370107717533999298191025335633779} a^{8} + \frac{19410797246745252938843247752085516429319285768023840693309127815419578943991392258391389121793211864490363}{53762405634702645624887235145545648268188499303685349751783248249596597937790035905844666432730341778544593} a^{7} + \frac{2346133028464220048016224047289116910008670908679895956579949941143762839322362430824132257818858056655594}{161287216904107936874661705436636944804565497911056049255349744748789793813370107717533999298191025335633779} a^{6} - \frac{2451706773288696456395976521142751992781097885064294520051195220733753638838515181488424121227616895117506}{53762405634702645624887235145545648268188499303685349751783248249596597937790035905844666432730341778544593} a^{5} - \frac{27987562690717837016879155583626914531493590664650252640431095327063324654290689757700152718144347162436801}{161287216904107936874661705436636944804565497911056049255349744748789793813370107717533999298191025335633779} a^{4} + \frac{4756247255279712372988782058656074978103363914501713240734707163404777573107478800299313365755593932837136}{53762405634702645624887235145545648268188499303685349751783248249596597937790035905844666432730341778544593} a^{3} + \frac{4227511170455176620884771174984981033609833952838260247183422773476479205483534335832447013558175449528667}{9487483347300466874980100319802173223797970465356238191491161455811164341962947512796117605775942666801987} a^{2} + \frac{69774495537425419576834676633011675558254911372623077978404805026225886321316948047482578710962698666771031}{161287216904107936874661705436636944804565497911056049255349744748789793813370107717533999298191025335633779} a - \frac{19812532697867280423661168924574520425340726665793693033805838093688888031784942493647185370657361148863452}{53762405634702645624887235145545648268188499303685349751783248249596597937790035905844666432730341778544593}$
Class group and class number
$C_{2}\times C_{2}$, which has order $4$ (assuming GRH)
Unit group
| Rank: | $11$ | magma: UnitRank(K);
sage: UK.rank()
gp: K.fu
| |
| Torsion generator: | \( -1 \) (order $2$) | magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
sage: UK.torsion_generator()
gp: K.tu[2]
| |
| Fundamental units: | Units are too long to display, but can be downloaded with other data for this field from 'Stored data to gp' link to the right (assuming GRH) | magma: [K!f(g): g in Generators(UK)];
sage: UK.fundamental_units()
gp: K.fu
| |
| Regulator: | \( 1281741427100 \) (assuming GRH) | magma: Regulator(K);
sage: K.regulator()
gp: K.reg
|
Galois group
| A solvable group of order 5120 |
| The 44 conjugacy class representatives for t20n324 |
| Character table for t20n324 is not computed |
Intermediate fields
| 5.5.160801.1, 10.10.116071900626889.2 |
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Sibling fields
Frobenius cycle types
| $p$ | 2 | 3 | 5 | 7 | 11 | 13 | 17 | 19 | 23 | 29 | 31 | 37 | 41 | 43 | 47 | 53 | 59 |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Cycle type | ${\href{/LocalNumberField/2.5.0.1}{5} }^{4}$ | ${\href{/LocalNumberField/3.8.0.1}{8} }{,}\,{\href{/LocalNumberField/3.4.0.1}{4} }{,}\,{\href{/LocalNumberField/3.2.0.1}{2} }^{4}$ | ${\href{/LocalNumberField/5.10.0.1}{10} }^{2}$ | ${\href{/LocalNumberField/7.10.0.1}{10} }^{2}$ | ${\href{/LocalNumberField/11.5.0.1}{5} }^{4}$ | ${\href{/LocalNumberField/13.8.0.1}{8} }{,}\,{\href{/LocalNumberField/13.4.0.1}{4} }^{2}{,}\,{\href{/LocalNumberField/13.2.0.1}{2} }{,}\,{\href{/LocalNumberField/13.1.0.1}{1} }^{2}$ | ${\href{/LocalNumberField/17.8.0.1}{8} }{,}\,{\href{/LocalNumberField/17.4.0.1}{4} }{,}\,{\href{/LocalNumberField/17.2.0.1}{2} }^{4}$ | ${\href{/LocalNumberField/19.8.0.1}{8} }{,}\,{\href{/LocalNumberField/19.4.0.1}{4} }^{2}{,}\,{\href{/LocalNumberField/19.2.0.1}{2} }{,}\,{\href{/LocalNumberField/19.1.0.1}{1} }^{2}$ | ${\href{/LocalNumberField/23.8.0.1}{8} }{,}\,{\href{/LocalNumberField/23.4.0.1}{4} }^{2}{,}\,{\href{/LocalNumberField/23.2.0.1}{2} }{,}\,{\href{/LocalNumberField/23.1.0.1}{1} }^{2}$ | ${\href{/LocalNumberField/29.10.0.1}{10} }^{2}$ | ${\href{/LocalNumberField/31.4.0.1}{4} }^{4}{,}\,{\href{/LocalNumberField/31.2.0.1}{2} }^{2}$ | ${\href{/LocalNumberField/37.4.0.1}{4} }^{2}{,}\,{\href{/LocalNumberField/37.2.0.1}{2} }^{6}$ | ${\href{/LocalNumberField/41.10.0.1}{10} }^{2}$ | ${\href{/LocalNumberField/43.5.0.1}{5} }^{4}$ | ${\href{/LocalNumberField/47.5.0.1}{5} }^{4}$ | ${\href{/LocalNumberField/53.8.0.1}{8} }{,}\,{\href{/LocalNumberField/53.4.0.1}{4} }{,}\,{\href{/LocalNumberField/53.2.0.1}{2} }^{4}$ | ${\href{/LocalNumberField/59.4.0.1}{4} }^{4}{,}\,{\href{/LocalNumberField/59.2.0.1}{2} }^{2}$ |
Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
| $p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
|---|---|---|---|---|---|---|---|
| $67$ | $\Q_{67}$ | $x + 4$ | $1$ | $1$ | $0$ | Trivial | $[\ ]$ |
| $\Q_{67}$ | $x + 4$ | $1$ | $1$ | $0$ | Trivial | $[\ ]$ | |
| $\Q_{67}$ | $x + 4$ | $1$ | $1$ | $0$ | Trivial | $[\ ]$ | |
| $\Q_{67}$ | $x + 4$ | $1$ | $1$ | $0$ | Trivial | $[\ ]$ | |
| 67.2.0.1 | $x^{2} - x + 12$ | $1$ | $2$ | $0$ | $C_2$ | $[\ ]^{2}$ | |
| 67.2.0.1 | $x^{2} - x + 12$ | $1$ | $2$ | $0$ | $C_2$ | $[\ ]^{2}$ | |
| 67.4.2.1 | $x^{4} + 1541 x^{2} + 646416$ | $2$ | $2$ | $2$ | $C_2^2$ | $[\ ]_{2}^{2}$ | |
| 67.4.2.1 | $x^{4} + 1541 x^{2} + 646416$ | $2$ | $2$ | $2$ | $C_2^2$ | $[\ ]_{2}^{2}$ | |
| 67.4.2.1 | $x^{4} + 1541 x^{2} + 646416$ | $2$ | $2$ | $2$ | $C_2^2$ | $[\ ]_{2}^{2}$ | |
| $97$ | 97.2.0.1 | $x^{2} - x + 5$ | $1$ | $2$ | $0$ | $C_2$ | $[\ ]^{2}$ |
| 97.2.0.1 | $x^{2} - x + 5$ | $1$ | $2$ | $0$ | $C_2$ | $[\ ]^{2}$ | |
| 97.4.0.1 | $x^{4} - x + 23$ | $1$ | $4$ | $0$ | $C_4$ | $[\ ]^{4}$ | |
| 97.4.2.2 | $x^{4} - 97 x^{2} + 47045$ | $2$ | $2$ | $2$ | $C_4$ | $[\ ]_{2}^{2}$ | |
| 97.4.0.1 | $x^{4} - x + 23$ | $1$ | $4$ | $0$ | $C_4$ | $[\ ]^{4}$ | |
| 97.4.0.1 | $x^{4} - x + 23$ | $1$ | $4$ | $0$ | $C_4$ | $[\ ]^{4}$ | |
| 401 | Data not computed | ||||||