Properties

Label 20.4.91395200000...0000.1
Degree $20$
Signature $[4, 8]$
Discriminant $2^{28}\cdot 5^{23}\cdot 13^{4}$
Root discriminant $28.06$
Ramified primes $2, 5, 13$
Class number $2$ (GRH)
Class group $[2]$ (GRH)
Galois group 20T369

Related objects

Downloads

Learn more about

Show commands for: Magma / SageMath / Pari/GP

magma: R<x> := PolynomialRing(Rationals()); K<a> := NumberField(R![5, 0, -25, 0, -35, 0, 130, 0, 90, 0, -215, 0, -230, 0, -40, 0, 25, 0, 10, 0, 1]);
 
sage: x = polygen(QQ); K.<a> = NumberField(x^20 + 10*x^18 + 25*x^16 - 40*x^14 - 230*x^12 - 215*x^10 + 90*x^8 + 130*x^6 - 35*x^4 - 25*x^2 + 5)
 
gp: K = bnfinit(x^20 + 10*x^18 + 25*x^16 - 40*x^14 - 230*x^12 - 215*x^10 + 90*x^8 + 130*x^6 - 35*x^4 - 25*x^2 + 5, 1)
 

Normalized defining polynomial

\( x^{20} + 10 x^{18} + 25 x^{16} - 40 x^{14} - 230 x^{12} - 215 x^{10} + 90 x^{8} + 130 x^{6} - 35 x^{4} - 25 x^{2} + 5 \)

magma: DefiningPolynomial(K);
 
sage: K.defining_polynomial()
 
gp: K.pol
 

Invariants

Degree:  $20$
magma: Degree(K);
 
sage: K.degree()
 
gp: poldegree(K.pol)
 
Signature:  $[4, 8]$
magma: Signature(K);
 
sage: K.signature()
 
gp: K.sign
 
Discriminant:  \(91395200000000000000000000000=2^{28}\cdot 5^{23}\cdot 13^{4}\)
magma: Discriminant(Integers(K));
 
sage: K.disc()
 
gp: K.disc
 
Root discriminant:  $28.06$
magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
 
sage: (K.disc().abs())^(1./K.degree())
 
gp: abs(K.disc)^(1/poldegree(K.pol))
 
Ramified primes:  $2, 5, 13$
magma: PrimeDivisors(Discriminant(Integers(K)));
 
sage: K.disc().support()
 
gp: factor(abs(K.disc))[,1]~
 
This field is not Galois over $\Q$.
This is not a CM field.

Integral basis (with respect to field generator \(a\))

$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $a^{6}$, $a^{7}$, $a^{8}$, $a^{9}$, $a^{10}$, $a^{11}$, $a^{12}$, $a^{13}$, $a^{14}$, $a^{15}$, $\frac{1}{8} a^{16} + \frac{1}{4} a^{14} - \frac{1}{4} a^{10} + \frac{1}{4} a^{8} + \frac{3}{8} a^{6} - \frac{1}{8} a^{2} - \frac{3}{8}$, $\frac{1}{8} a^{17} + \frac{1}{4} a^{15} - \frac{1}{4} a^{11} + \frac{1}{4} a^{9} + \frac{3}{8} a^{7} - \frac{1}{8} a^{3} - \frac{3}{8} a$, $\frac{1}{7049048} a^{18} + \frac{400149}{7049048} a^{16} - \frac{1071161}{3524524} a^{14} - \frac{1214545}{3524524} a^{12} - \frac{390541}{1762262} a^{10} + \frac{2163961}{7049048} a^{8} - \frac{2243031}{7049048} a^{6} + \frac{1142207}{7049048} a^{4} + \frac{1220781}{3524524} a^{2} - \frac{392729}{7049048}$, $\frac{1}{7049048} a^{19} + \frac{400149}{7049048} a^{17} - \frac{1071161}{3524524} a^{15} - \frac{1214545}{3524524} a^{13} - \frac{390541}{1762262} a^{11} + \frac{2163961}{7049048} a^{9} - \frac{2243031}{7049048} a^{7} + \frac{1142207}{7049048} a^{5} + \frac{1220781}{3524524} a^{3} - \frac{392729}{7049048} a$

magma: IntegralBasis(K);
 
sage: K.integral_basis()
 
gp: K.zk
 

Class group and class number

$C_{2}$, which has order $2$ (assuming GRH)

magma: ClassGroup(K);
 
sage: K.class_group().invariants()
 
gp: K.clgp
 

Unit group

magma: UK, f := UnitGroup(K);
 
sage: UK = K.unit_group()
 
Rank:  $11$
magma: UnitRank(K);
 
sage: UK.rank()
 
gp: K.fu
 
Torsion generator:  \( -1 \) (order $2$)
magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
 
sage: UK.torsion_generator()
 
gp: K.tu[2]
 
Fundamental units:  Units are too long to display, but can be downloaded with other data for this field from 'Stored data to gp' link to the right (assuming GRH)
magma: [K!f(g): g in Generators(UK)];
 
sage: UK.fundamental_units()
 
gp: K.fu
 
Regulator:  \( 2150334.80998 \) (assuming GRH)
magma: Regulator(K);
 
sage: K.regulator()
 
gp: K.reg
 

Galois group

20T369:

magma: GaloisGroup(K);
 
sage: K.galois_group(type='pari')
 
gp: polgalois(K.pol)
 
A non-solvable group of order 7680
The 72 conjugacy class representatives for t20n369 are not computed
Character table for t20n369 is not computed

Intermediate fields

\(\Q(\sqrt{5}) \), 5.3.162500.1, 10.6.132031250000.1

Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.

Sibling fields

Degree 20 sibling: data not computed
Degree 40 siblings: data not computed

Frobenius cycle types

$p$ 2 3 5 7 11 13 17 19 23 29 31 37 41 43 47 53 59
Cycle type R $20$ R ${\href{/LocalNumberField/7.4.0.1}{4} }^{5}$ ${\href{/LocalNumberField/11.10.0.1}{10} }^{2}$ R ${\href{/LocalNumberField/17.8.0.1}{8} }^{2}{,}\,{\href{/LocalNumberField/17.4.0.1}{4} }$ ${\href{/LocalNumberField/19.5.0.1}{5} }^{4}$ ${\href{/LocalNumberField/23.4.0.1}{4} }^{3}{,}\,{\href{/LocalNumberField/23.2.0.1}{2} }^{4}$ ${\href{/LocalNumberField/29.10.0.1}{10} }^{2}$ ${\href{/LocalNumberField/31.4.0.1}{4} }^{2}{,}\,{\href{/LocalNumberField/31.2.0.1}{2} }^{4}{,}\,{\href{/LocalNumberField/31.1.0.1}{1} }^{4}$ $20$ ${\href{/LocalNumberField/41.3.0.1}{3} }^{4}{,}\,{\href{/LocalNumberField/41.2.0.1}{2} }^{4}$ ${\href{/LocalNumberField/43.12.0.1}{12} }{,}\,{\href{/LocalNumberField/43.4.0.1}{4} }^{2}$ ${\href{/LocalNumberField/47.12.0.1}{12} }{,}\,{\href{/LocalNumberField/47.2.0.1}{2} }^{4}$ ${\href{/LocalNumberField/53.12.0.1}{12} }{,}\,{\href{/LocalNumberField/53.2.0.1}{2} }^{4}$ ${\href{/LocalNumberField/59.5.0.1}{5} }^{4}$

In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.

magma: p := 7; // to obtain a list of $[e_i,f_i]$ for the factorization of the ideal $p\mathcal{O}_K$:
 
magma: idealfactors := Factorization(p*Integers(K)); // get the data
 
magma: [<primefactor[2], Valuation(Norm(primefactor[1]), p)> : primefactor in idealfactors];
 
sage: p = 7; # to obtain a list of $[e_i,f_i]$ for the factorization of the ideal $p\mathcal{O}_K$:
 
sage: [(e, pr.norm().valuation(p)) for pr,e in K.factor(p)]
 
gp: p = 7; \\ to obtain a list of $[e_i,f_i]$ for the factorization of the ideal $p\mathcal{O}_K$:
 
gp: idealfactors = idealprimedec(K, p); \\ get the data
 
gp: vector(length(idealfactors), j, [idealfactors[j][3], idealfactors[j][4]])
 

Local algebras for ramified primes

$p$LabelPolynomial $e$ $f$ $c$ Galois group Slope content
$2$2.8.16.2$x^{8} + 2 x^{6} + 6 x^{4} + 4 x^{2} + 8 x + 20$$4$$2$$16$$C_4\times C_2$$[2, 3]^{2}$
2.12.12.25$x^{12} - 78 x^{10} - 1621 x^{8} + 460 x^{6} - 1977 x^{4} + 866 x^{2} + 749$$2$$6$$12$$C_{12}$$[2]^{6}$
5Data not computed
$13$13.2.0.1$x^{2} - x + 2$$1$$2$$0$$C_2$$[\ ]^{2}$
13.2.0.1$x^{2} - x + 2$$1$$2$$0$$C_2$$[\ ]^{2}$
13.2.0.1$x^{2} - x + 2$$1$$2$$0$$C_2$$[\ ]^{2}$
13.2.0.1$x^{2} - x + 2$$1$$2$$0$$C_2$$[\ ]^{2}$
13.4.0.1$x^{4} + x^{2} - x + 2$$1$$4$$0$$C_4$$[\ ]^{4}$
13.8.4.1$x^{8} + 26 x^{6} + 845 x^{4} + 6591 x^{2} + 114244$$2$$4$$4$$C_4\times C_2$$[\ ]_{2}^{4}$