Normalized defining polynomial
\( x^{20} - x^{19} - 10 x^{18} - 2 x^{17} + 50 x^{16} + 55 x^{15} - 108 x^{14} - 242 x^{13} + 21 x^{12} + 435 x^{11} + 295 x^{10} - 283 x^{9} - 434 x^{8} - 28 x^{7} + 216 x^{6} + 74 x^{5} - 94 x^{4} - 112 x^{3} - 52 x^{2} - 13 x - 1 \)
Invariants
| Degree: | $20$ | magma: Degree(K);
sage: K.degree()
gp: poldegree(K.pol)
| |
| Signature: | $[4, 8]$ | magma: Signature(K);
sage: K.signature()
gp: K.sign
| |
| Discriminant: | \(891807767841222552715264=2^{18}\cdot 67^{4}\cdot 641^{4}\) | magma: Discriminant(Integers(K));
sage: K.disc()
gp: K.disc
| |
| Root discriminant: | $15.76$ | magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
sage: (K.disc().abs())^(1./K.degree())
gp: abs(K.disc)^(1/poldegree(K.pol))
| |
| Ramified primes: | $2, 67, 641$ | magma: PrimeDivisors(Discriminant(Integers(K)));
sage: K.disc().support()
gp: factor(abs(K.disc))[,1]~
| |
| This field is not Galois over $\Q$. | |||
| This is not a CM field. | |||
Integral basis (with respect to field generator \(a\))
$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $a^{6}$, $a^{7}$, $a^{8}$, $a^{9}$, $a^{10}$, $a^{11}$, $a^{12}$, $a^{13}$, $a^{14}$, $a^{15}$, $a^{16}$, $a^{17}$, $a^{18}$, $\frac{1}{9192351081637} a^{19} - \frac{1212495565468}{9192351081637} a^{18} + \frac{17566487188}{9192351081637} a^{17} + \frac{2789527878365}{9192351081637} a^{16} - \frac{3074776038300}{9192351081637} a^{15} - \frac{4059252428289}{9192351081637} a^{14} + \frac{4042374792463}{9192351081637} a^{13} - \frac{1803031553298}{9192351081637} a^{12} + \frac{2640860813274}{9192351081637} a^{11} - \frac{483924161061}{9192351081637} a^{10} - \frac{2539638571840}{9192351081637} a^{9} + \frac{712275933603}{9192351081637} a^{8} - \frac{3534662334271}{9192351081637} a^{7} + \frac{1106549932694}{9192351081637} a^{6} + \frac{899550148663}{9192351081637} a^{5} - \frac{3729839013266}{9192351081637} a^{4} + \frac{46638221673}{9192351081637} a^{3} + \frac{4443682422933}{9192351081637} a^{2} + \frac{2156493812624}{9192351081637} a - \frac{2670111446221}{9192351081637}$
Class group and class number
Trivial group, which has order $1$ (assuming GRH)
Unit group
| Rank: | $11$ | magma: UnitRank(K);
sage: UK.rank()
gp: K.fu
| |
| Torsion generator: | \( -1 \) (order $2$) | magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
sage: UK.torsion_generator()
gp: K.tu[2]
| |
| Fundamental units: | Units are too long to display, but can be downloaded with other data for this field from 'Stored data to gp' link to the right (assuming GRH) | magma: [K!f(g): g in Generators(UK)];
sage: UK.fundamental_units()
gp: K.fu
| |
| Regulator: | \( 7497.55761136 \) (assuming GRH) | magma: Regulator(K);
sage: K.regulator()
gp: K.reg
|
Galois group
| A non-solvable group of order 928972800 |
| The 139 conjugacy class representatives for t20n1100 are not computed |
| Character table for t20n1100 is not computed |
Intermediate fields
| 10.2.1844444809.1 |
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Frobenius cycle types
| $p$ | 2 | 3 | 5 | 7 | 11 | 13 | 17 | 19 | 23 | 29 | 31 | 37 | 41 | 43 | 47 | 53 | 59 |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Cycle type | R | $16{,}\,{\href{/LocalNumberField/3.4.0.1}{4} }$ | ${\href{/LocalNumberField/5.14.0.1}{14} }{,}\,{\href{/LocalNumberField/5.6.0.1}{6} }$ | ${\href{/LocalNumberField/7.12.0.1}{12} }{,}\,{\href{/LocalNumberField/7.8.0.1}{8} }$ | ${\href{/LocalNumberField/11.14.0.1}{14} }{,}\,{\href{/LocalNumberField/11.6.0.1}{6} }$ | ${\href{/LocalNumberField/13.8.0.1}{8} }^{2}{,}\,{\href{/LocalNumberField/13.2.0.1}{2} }^{2}$ | $18{,}\,{\href{/LocalNumberField/17.2.0.1}{2} }$ | ${\href{/LocalNumberField/19.5.0.1}{5} }^{2}{,}\,{\href{/LocalNumberField/19.4.0.1}{4} }{,}\,{\href{/LocalNumberField/19.2.0.1}{2} }^{3}$ | ${\href{/LocalNumberField/23.5.0.1}{5} }^{4}$ | ${\href{/LocalNumberField/29.8.0.1}{8} }^{2}{,}\,{\href{/LocalNumberField/29.2.0.1}{2} }^{2}$ | ${\href{/LocalNumberField/31.8.0.1}{8} }^{2}{,}\,{\href{/LocalNumberField/31.2.0.1}{2} }^{2}$ | ${\href{/LocalNumberField/37.6.0.1}{6} }{,}\,{\href{/LocalNumberField/37.4.0.1}{4} }^{2}{,}\,{\href{/LocalNumberField/37.2.0.1}{2} }^{3}$ | $16{,}\,{\href{/LocalNumberField/41.4.0.1}{4} }$ | ${\href{/LocalNumberField/43.7.0.1}{7} }^{2}{,}\,{\href{/LocalNumberField/43.3.0.1}{3} }^{2}$ | ${\href{/LocalNumberField/47.8.0.1}{8} }{,}\,{\href{/LocalNumberField/47.6.0.1}{6} }{,}\,{\href{/LocalNumberField/47.4.0.1}{4} }{,}\,{\href{/LocalNumberField/47.2.0.1}{2} }$ | ${\href{/LocalNumberField/53.14.0.1}{14} }{,}\,{\href{/LocalNumberField/53.6.0.1}{6} }$ | $18{,}\,{\href{/LocalNumberField/59.2.0.1}{2} }$ |
In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
| $p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
|---|---|---|---|---|---|---|---|
| $2$ | 2.8.0.1 | $x^{8} + x^{4} + x^{3} + x + 1$ | $1$ | $8$ | $0$ | $C_8$ | $[\ ]^{8}$ |
| 2.12.18.2 | $x^{12} - 36 x^{10} + 972 x^{8} + 1696 x^{6} - 1168 x^{4} + 1984 x^{2} + 1344$ | $2$ | $6$ | $18$ | 12T105 | $[2, 2, 2, 2, 3]^{6}$ | |
| $67$ | $\Q_{67}$ | $x + 4$ | $1$ | $1$ | $0$ | Trivial | $[\ ]$ |
| $\Q_{67}$ | $x + 4$ | $1$ | $1$ | $0$ | Trivial | $[\ ]$ | |
| 67.3.2.2 | $x^{3} + 268$ | $3$ | $1$ | $2$ | $C_3$ | $[\ ]_{3}$ | |
| 67.3.0.1 | $x^{3} - x + 16$ | $1$ | $3$ | $0$ | $C_3$ | $[\ ]^{3}$ | |
| 67.3.0.1 | $x^{3} - x + 16$ | $1$ | $3$ | $0$ | $C_3$ | $[\ ]^{3}$ | |
| 67.3.2.2 | $x^{3} + 268$ | $3$ | $1$ | $2$ | $C_3$ | $[\ ]_{3}$ | |
| 67.3.0.1 | $x^{3} - x + 16$ | $1$ | $3$ | $0$ | $C_3$ | $[\ ]^{3}$ | |
| 67.3.0.1 | $x^{3} - x + 16$ | $1$ | $3$ | $0$ | $C_3$ | $[\ ]^{3}$ | |
| 641 | Data not computed | ||||||