Normalized defining polynomial
\( x^{20} - x^{19} - 10 x^{18} - 2 x^{17} + 50 x^{16} + 55 x^{15} - 108 x^{14} - 242 x^{13} + 21 x^{12} + \cdots - 1 \)
Invariants
| Degree: | $20$ |
| |
| Signature: | $[4, 8]$ |
| |
| Discriminant: |
\(891807767841222552715264\)
\(\medspace = 2^{18}\cdot 67^{4}\cdot 641^{4}\)
|
| |
| Root discriminant: | \(15.76\) |
| |
| Galois root discriminant: | $2^{39/16}67^{2/3}641^{2/3}\approx 6643.279161271313$ | ||
| Ramified primes: |
\(2\), \(67\), \(641\)
|
| |
| Discriminant root field: | \(\Q\) | ||
| $\Aut(K/\Q)$: | $C_2$ |
| |
| This field is not Galois over $\Q$. | |||
| This is not a CM field. | |||
| This field has no CM subfields. | |||
Integral basis (with respect to field generator \(a\))
$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $a^{6}$, $a^{7}$, $a^{8}$, $a^{9}$, $a^{10}$, $a^{11}$, $a^{12}$, $a^{13}$, $a^{14}$, $a^{15}$, $a^{16}$, $a^{17}$, $a^{18}$, $\frac{1}{9192351081637}a^{19}-\frac{1212495565468}{9192351081637}a^{18}+\frac{17566487188}{9192351081637}a^{17}+\frac{2789527878365}{9192351081637}a^{16}-\frac{3074776038300}{9192351081637}a^{15}-\frac{4059252428289}{9192351081637}a^{14}+\frac{4042374792463}{9192351081637}a^{13}-\frac{1803031553298}{9192351081637}a^{12}+\frac{2640860813274}{9192351081637}a^{11}-\frac{483924161061}{9192351081637}a^{10}-\frac{2539638571840}{9192351081637}a^{9}+\frac{712275933603}{9192351081637}a^{8}-\frac{3534662334271}{9192351081637}a^{7}+\frac{1106549932694}{9192351081637}a^{6}+\frac{899550148663}{9192351081637}a^{5}-\frac{3729839013266}{9192351081637}a^{4}+\frac{46638221673}{9192351081637}a^{3}+\frac{4443682422933}{9192351081637}a^{2}+\frac{2156493812624}{9192351081637}a-\frac{2670111446221}{9192351081637}$
| Monogenic: | Not computed | |
| Index: | $1$ | |
| Inessential primes: | None |
Class group and class number
| Ideal class group: | Trivial group, which has order $1$ (assuming GRH) |
| |
| Narrow class group: | Trivial group, which has order $1$ (assuming GRH) |
|
Unit group
| Rank: | $11$ |
| |
| Torsion generator: |
\( -1 \)
(order $2$)
|
| |
| Fundamental units: |
$\frac{3101127938640}{9192351081637}a^{19}-\frac{3798750626860}{9192351081637}a^{18}-\frac{30881522152443}{9192351081637}a^{17}+\frac{1555580084801}{9192351081637}a^{16}+\frac{162388568221886}{9192351081637}a^{15}+\frac{133443406227919}{9192351081637}a^{14}-\frac{405529750713305}{9192351081637}a^{13}-\frac{690024321654374}{9192351081637}a^{12}+\frac{326980308393445}{9192351081637}a^{11}+\frac{14\cdots 77}{9192351081637}a^{10}+\frac{485472473054700}{9192351081637}a^{9}-\frac{13\cdots 01}{9192351081637}a^{8}-\frac{11\cdots 67}{9192351081637}a^{7}+\frac{522377484037397}{9192351081637}a^{6}+\frac{778909331666757}{9192351081637}a^{5}-\frac{112346738340942}{9192351081637}a^{4}-\frac{434473307437001}{9192351081637}a^{3}-\frac{199367746813814}{9192351081637}a^{2}-\frac{28496818390460}{9192351081637}a+\frac{6335154115592}{9192351081637}$, $\frac{8172568800432}{9192351081637}a^{19}-\frac{12356814942275}{9192351081637}a^{18}-\frac{77079245171433}{9192351081637}a^{17}+\frac{26082228922711}{9192351081637}a^{16}+\frac{410337758263790}{9192351081637}a^{15}+\frac{230295971926381}{9192351081637}a^{14}-\frac{10\cdots 50}{9192351081637}a^{13}-\frac{14\cdots 57}{9192351081637}a^{12}+\frac{11\cdots 16}{9192351081637}a^{11}+\frac{32\cdots 66}{9192351081637}a^{10}+\frac{469953060082206}{9192351081637}a^{9}-\frac{31\cdots 27}{9192351081637}a^{8}-\frac{18\cdots 76}{9192351081637}a^{7}+\frac{13\cdots 16}{9192351081637}a^{6}+\frac{12\cdots 86}{9192351081637}a^{5}-\frac{406238355890530}{9192351081637}a^{4}-\frac{731117633007181}{9192351081637}a^{3}-\frac{397571762963929}{9192351081637}a^{2}-\frac{99075962985807}{9192351081637}a-\frac{14178163565728}{9192351081637}$, $\frac{8415152302772}{9192351081637}a^{19}-\frac{11977562521054}{9192351081637}a^{18}-\frac{79738299444952}{9192351081637}a^{17}+\frac{17645249681424}{9192351081637}a^{16}+\frac{420298219479772}{9192351081637}a^{15}+\frac{284505761933773}{9192351081637}a^{14}-\frac{10\cdots 77}{9192351081637}a^{13}-\frac{16\cdots 00}{9192351081637}a^{12}+\frac{955020925834445}{9192351081637}a^{11}+\frac{34\cdots 59}{9192351081637}a^{10}+\frac{953114236725234}{9192351081637}a^{9}-\frac{31\cdots 88}{9192351081637}a^{8}-\frac{24\cdots 11}{9192351081637}a^{7}+\frac{10\cdots 92}{9192351081637}a^{6}+\frac{15\cdots 09}{9192351081637}a^{5}-\frac{181422575427055}{9192351081637}a^{4}-\frac{851063835095536}{9192351081637}a^{3}-\frac{524687212430300}{9192351081637}a^{2}-\frac{137471172560397}{9192351081637}a-\frac{21276284328136}{9192351081637}$, $\frac{242583502340}{9192351081637}a^{19}+\frac{379252421221}{9192351081637}a^{18}-\frac{2659054273519}{9192351081637}a^{17}-\frac{8436979241287}{9192351081637}a^{16}+\frac{9960461215982}{9192351081637}a^{15}+\frac{54209790007392}{9192351081637}a^{14}+\frac{16524576554473}{9192351081637}a^{13}-\frac{164520911203843}{9192351081637}a^{12}-\frac{187977723873171}{9192351081637}a^{11}+\frac{199607093473493}{9192351081637}a^{10}+\frac{483161176643028}{9192351081637}a^{9}+\frac{26955511697039}{9192351081637}a^{8}-\frac{534173385327835}{9192351081637}a^{7}-\frac{272923723248624}{9192351081637}a^{6}+\frac{284922965059923}{9192351081637}a^{5}+\frac{224815780463475}{9192351081637}a^{4}-\frac{119946202088355}{9192351081637}a^{3}-\frac{127115449466371}{9192351081637}a^{2}-\frac{38395209574590}{9192351081637}a-\frac{7098120762408}{9192351081637}$, $\frac{3163789408582}{9192351081637}a^{19}-\frac{1561743918057}{9192351081637}a^{18}-\frac{35445155656976}{9192351081637}a^{17}-\frac{18137783736714}{9192351081637}a^{16}+\frac{173386912663401}{9192351081637}a^{15}+\frac{241914266373276}{9192351081637}a^{14}-\frac{354495423331463}{9192351081637}a^{13}-\frac{970723427026784}{9192351081637}a^{12}-\frac{48047018604624}{9192351081637}a^{11}+\frac{17\cdots 67}{9192351081637}a^{10}+\frac{13\cdots 11}{9192351081637}a^{9}-\frac{11\cdots 33}{9192351081637}a^{8}-\frac{18\cdots 95}{9192351081637}a^{7}-\frac{67252179558121}{9192351081637}a^{6}+\frac{10\cdots 87}{9192351081637}a^{5}+\frac{260156364769323}{9192351081637}a^{4}-\frac{461007125201701}{9192351081637}a^{3}-\frac{432741292756252}{9192351081637}a^{2}-\frac{161039560406377}{9192351081637}a-\frac{24740115415726}{9192351081637}$, $\frac{3340590282521}{9192351081637}a^{19}-\frac{2403980176712}{9192351081637}a^{18}-\frac{36403542781117}{9192351081637}a^{17}-\frac{12590027394233}{9192351081637}a^{16}+\frac{183514523904742}{9192351081637}a^{15}+\frac{222079242213276}{9192351081637}a^{14}-\frac{408252216429959}{9192351081637}a^{13}-\frac{955063709981194}{9192351081637}a^{12}+\frac{108438377336067}{9192351081637}a^{11}+\frac{17\cdots 63}{9192351081637}a^{10}+\frac{10\cdots 30}{9192351081637}a^{9}-\frac{14\cdots 50}{9192351081637}a^{8}-\frac{17\cdots 21}{9192351081637}a^{7}+\frac{256920986409980}{9192351081637}a^{6}+\frac{10\cdots 28}{9192351081637}a^{5}+\frac{86238185414764}{9192351081637}a^{4}-\frac{533608318444866}{9192351081637}a^{3}-\frac{348642162477392}{9192351081637}a^{2}-\frac{92137073605199}{9192351081637}a-\frac{12791397547761}{9192351081637}$, $\frac{6120487479278}{9192351081637}a^{19}-\frac{6911888429219}{9192351081637}a^{18}-\frac{62194475285453}{9192351081637}a^{17}-\frac{285906172389}{9192351081637}a^{16}+\frac{321279394434757}{9192351081637}a^{15}+\frac{281758694359530}{9192351081637}a^{14}-\frac{782732435778219}{9192351081637}a^{13}-\frac{13\cdots 74}{9192351081637}a^{12}+\frac{550696983033575}{9192351081637}a^{11}+\frac{28\cdots 84}{9192351081637}a^{10}+\frac{11\cdots 19}{9192351081637}a^{9}-\frac{24\cdots 43}{9192351081637}a^{8}-\frac{22\cdots 91}{9192351081637}a^{7}+\frac{735305076786430}{9192351081637}a^{6}+\frac{14\cdots 60}{9192351081637}a^{5}-\frac{53587518623942}{9192351081637}a^{4}-\frac{727725556252124}{9192351081637}a^{3}-\frac{487934086134387}{9192351081637}a^{2}-\frac{135810164955432}{9192351081637}a-\frac{14584846821698}{9192351081637}$, $\frac{955857745303}{9192351081637}a^{19}-\frac{1609939541642}{9192351081637}a^{18}-\frac{9324717344162}{9192351081637}a^{17}+\frac{5390055377436}{9192351081637}a^{16}+\frac{53011125039633}{9192351081637}a^{15}+\frac{17610992842989}{9192351081637}a^{14}-\frac{161899237235861}{9192351081637}a^{13}-\frac{168867191410261}{9192351081637}a^{12}+\frac{244576124170954}{9192351081637}a^{11}+\frac{476939750861563}{9192351081637}a^{10}-\frac{92018178601787}{9192351081637}a^{9}-\frac{655684562989076}{9192351081637}a^{8}-\frac{221168346805243}{9192351081637}a^{7}+\frac{486911745004953}{9192351081637}a^{6}+\frac{319974595455615}{9192351081637}a^{5}-\frac{210368707366031}{9192351081637}a^{4}-\frac{234955484923272}{9192351081637}a^{3}+\frac{14057057969889}{9192351081637}a^{2}+\frac{89289140939436}{9192351081637}a+\frac{29644547542363}{9192351081637}$, $\frac{369049810445}{9192351081637}a^{19}+\frac{497485834869}{9192351081637}a^{18}-\frac{4769696336105}{9192351081637}a^{17}-\frac{8959273737873}{9192351081637}a^{16}+\frac{18258036204870}{9192351081637}a^{15}+\frac{62718087982918}{9192351081637}a^{14}-\frac{798981543225}{9192351081637}a^{13}-\frac{186641338777134}{9192351081637}a^{12}-\frac{183368909213823}{9192351081637}a^{11}+\frac{208237645884619}{9192351081637}a^{10}+\frac{478496008571655}{9192351081637}a^{9}+\frac{100482834431199}{9192351081637}a^{8}-\frac{452266076367454}{9192351081637}a^{7}-\frac{369829636316997}{9192351081637}a^{6}+\frac{119059898578907}{9192351081637}a^{5}+\frac{256237314913683}{9192351081637}a^{4}-\frac{976562180453}{9192351081637}a^{3}-\frac{160881668817240}{9192351081637}a^{2}-\frac{97941556283201}{9192351081637}a-\frac{22355883389045}{9192351081637}$, $\frac{9634338123162}{9192351081637}a^{19}-\frac{11030324817491}{9192351081637}a^{18}-\frac{96448382676528}{9192351081637}a^{17}-\frac{1600205890607}{9192351081637}a^{16}+\frac{495414605387650}{9192351081637}a^{15}+\frac{444644599624691}{9192351081637}a^{14}-\frac{11\cdots 14}{9192351081637}a^{13}-\frac{21\cdots 71}{9192351081637}a^{12}+\frac{735065456453483}{9192351081637}a^{11}+\frac{42\cdots 41}{9192351081637}a^{10}+\frac{19\cdots 12}{9192351081637}a^{9}-\frac{34\cdots 43}{9192351081637}a^{8}-\frac{35\cdots 36}{9192351081637}a^{7}+\frac{773669125584015}{9192351081637}a^{6}+\frac{20\cdots 68}{9192351081637}a^{5}+\frac{114172770444988}{9192351081637}a^{4}-\frac{10\cdots 12}{9192351081637}a^{3}-\frac{830203561551803}{9192351081637}a^{2}-\frac{279568363561781}{9192351081637}a-\frac{42859340319263}{9192351081637}$, $\frac{6238818027071}{9192351081637}a^{19}-\frac{9413720712739}{9192351081637}a^{18}-\frac{57232010892197}{9192351081637}a^{17}+\frac{15817316660438}{9192351081637}a^{16}+\frac{301236483283643}{9192351081637}a^{15}+\frac{192089699842138}{9192351081637}a^{14}-\frac{756224395117269}{9192351081637}a^{13}-\frac{11\cdots 53}{9192351081637}a^{12}+\frac{662525778178332}{9192351081637}a^{11}+\frac{23\cdots 50}{9192351081637}a^{10}+\frac{689993101271563}{9192351081637}a^{9}-\frac{20\cdots 44}{9192351081637}a^{8}-\frac{16\cdots 56}{9192351081637}a^{7}+\frac{594302833354535}{9192351081637}a^{6}+\frac{972321481860837}{9192351081637}a^{5}-\frac{37605668713008}{9192351081637}a^{4}-\frac{536853724004321}{9192351081637}a^{3}-\frac{411287702869551}{9192351081637}a^{2}-\frac{145879477578830}{9192351081637}a-\frac{32330849902588}{9192351081637}$
|
| |
| Regulator: | \( 7497.55761136 \) (assuming GRH) |
|
Class number formula
\[ \begin{aligned}\lim_{s\to 1} (s-1)\zeta_K(s) =\mathstrut & \frac{2^{r_1}\cdot (2\pi)^{r_2}\cdot R\cdot h}{w\cdot\sqrt{|D|}}\cr \approx\mathstrut &\frac{2^{4}\cdot(2\pi)^{8}\cdot 7497.55761136 \cdot 1}{2\cdot\sqrt{891807767841222552715264}}\cr\approx \mathstrut & 0.154281239738 \end{aligned}\] (assuming GRH)
Galois group
$C_2^9.A_{10}$ (as 20T1100):
| A non-solvable group of order 928972800 |
| The 139 conjugacy class representatives for $C_2^9.A_{10}$ |
| Character table for $C_2^9.A_{10}$ |
Intermediate fields
| 10.2.1844444809.1 |
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Frobenius cycle types
| $p$ | $2$ | $3$ | $5$ | $7$ | $11$ | $13$ | $17$ | $19$ | $23$ | $29$ | $31$ | $37$ | $41$ | $43$ | $47$ | $53$ | $59$ |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Cycle type | R | $16{,}\,{\href{/padicField/3.4.0.1}{4} }$ | ${\href{/padicField/5.14.0.1}{14} }{,}\,{\href{/padicField/5.6.0.1}{6} }$ | ${\href{/padicField/7.12.0.1}{12} }{,}\,{\href{/padicField/7.8.0.1}{8} }$ | ${\href{/padicField/11.14.0.1}{14} }{,}\,{\href{/padicField/11.6.0.1}{6} }$ | ${\href{/padicField/13.8.0.1}{8} }^{2}{,}\,{\href{/padicField/13.2.0.1}{2} }^{2}$ | $18{,}\,{\href{/padicField/17.2.0.1}{2} }$ | ${\href{/padicField/19.5.0.1}{5} }^{2}{,}\,{\href{/padicField/19.4.0.1}{4} }{,}\,{\href{/padicField/19.2.0.1}{2} }^{3}$ | ${\href{/padicField/23.5.0.1}{5} }^{4}$ | ${\href{/padicField/29.8.0.1}{8} }^{2}{,}\,{\href{/padicField/29.2.0.1}{2} }^{2}$ | ${\href{/padicField/31.8.0.1}{8} }^{2}{,}\,{\href{/padicField/31.2.0.1}{2} }^{2}$ | ${\href{/padicField/37.6.0.1}{6} }{,}\,{\href{/padicField/37.4.0.1}{4} }^{2}{,}\,{\href{/padicField/37.2.0.1}{2} }^{3}$ | $16{,}\,{\href{/padicField/41.4.0.1}{4} }$ | ${\href{/padicField/43.7.0.1}{7} }^{2}{,}\,{\href{/padicField/43.3.0.1}{3} }^{2}$ | ${\href{/padicField/47.8.0.1}{8} }{,}\,{\href{/padicField/47.6.0.1}{6} }{,}\,{\href{/padicField/47.4.0.1}{4} }{,}\,{\href{/padicField/47.2.0.1}{2} }$ | ${\href{/padicField/53.14.0.1}{14} }{,}\,{\href{/padicField/53.6.0.1}{6} }$ | $18{,}\,{\href{/padicField/59.2.0.1}{2} }$ |
In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
| $p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
|---|---|---|---|---|---|---|---|
|
\(2\)
| 2.8.1.0a1.1 | $x^{8} + x^{4} + x^{3} + x^{2} + 1$ | $1$ | $8$ | $0$ | $C_8$ | $$[\ ]^{8}$$ |
| 2.6.2.18a1.12 | $x^{12} + 2 x^{10} + 2 x^{9} + 5 x^{8} + 8 x^{7} + 7 x^{6} + 10 x^{5} + 8 x^{4} + 14 x^{3} + 9 x^{2} + 6 x + 3$ | $2$ | $6$ | $18$ | 12T105 | $$[2, 2, 2, 2, 3]^{6}$$ | |
|
\(67\)
| $\Q_{67}$ | $x + 65$ | $1$ | $1$ | $0$ | Trivial | $$[\ ]$$ |
| $\Q_{67}$ | $x + 65$ | $1$ | $1$ | $0$ | Trivial | $$[\ ]$$ | |
| 67.1.3.2a1.3 | $x^{3} + 268$ | $3$ | $1$ | $2$ | $C_3$ | $$[\ ]_{3}$$ | |
| 67.3.1.0a1.1 | $x^{3} + 6 x + 65$ | $1$ | $3$ | $0$ | $C_3$ | $$[\ ]^{3}$$ | |
| 67.3.1.0a1.1 | $x^{3} + 6 x + 65$ | $1$ | $3$ | $0$ | $C_3$ | $$[\ ]^{3}$$ | |
| 67.1.3.2a1.3 | $x^{3} + 268$ | $3$ | $1$ | $2$ | $C_3$ | $$[\ ]_{3}$$ | |
| 67.3.1.0a1.1 | $x^{3} + 6 x + 65$ | $1$ | $3$ | $0$ | $C_3$ | $$[\ ]^{3}$$ | |
| 67.3.1.0a1.1 | $x^{3} + 6 x + 65$ | $1$ | $3$ | $0$ | $C_3$ | $$[\ ]^{3}$$ | |
|
\(641\)
| Deg $2$ | $1$ | $2$ | $0$ | $C_2$ | $$[\ ]^{2}$$ | |
| Deg $6$ | $1$ | $6$ | $0$ | $C_6$ | $$[\ ]^{6}$$ | ||
| Deg $6$ | $1$ | $6$ | $0$ | $C_6$ | $$[\ ]^{6}$$ | ||
| Deg $6$ | $3$ | $2$ | $4$ |