Normalized defining polynomial
\( x^{20} - 10 x^{16} - 4 x^{15} - 40 x^{13} - 40 x^{12} - 40 x^{11} - 90 x^{10} + 40 x^{9} - 40 x^{8} + 40 x^{7} + 4 x^{5} - 10 x^{4} + 1 \)
Invariants
| Degree: | $20$ | magma: Degree(K);
sage: K.degree()
gp: poldegree(K.pol)
| |
| Signature: | $[4, 8]$ | magma: Signature(K);
sage: K.signature()
gp: K.sign
| |
| Discriminant: | \(8796093022208000000000000=2^{55}\cdot 5^{12}\) | magma: Discriminant(Integers(K));
sage: K.disc()
gp: K.disc
| |
| Root discriminant: | $17.67$ | magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
sage: (K.disc().abs())^(1./K.degree())
gp: abs(K.disc)^(1/poldegree(K.pol))
| |
| Ramified primes: | $2, 5$ | magma: PrimeDivisors(Discriminant(Integers(K)));
sage: K.disc().support()
gp: factor(abs(K.disc))[,1]~
| |
| This field is not Galois over $\Q$. | |||
| This is not a CM field. | |||
Integral basis (with respect to field generator \(a\))
$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $a^{6}$, $a^{7}$, $a^{8}$, $a^{9}$, $a^{10}$, $a^{11}$, $a^{12}$, $a^{13}$, $a^{14}$, $a^{15}$, $\frac{1}{5} a^{16} - \frac{1}{5} a^{15} + \frac{1}{5} a^{14} - \frac{2}{5} a^{12} - \frac{1}{5} a^{10} - \frac{1}{5} a^{9} - \frac{2}{5} a^{8} + \frac{1}{5} a^{7} - \frac{1}{5} a^{6} - \frac{2}{5} a^{4} + \frac{1}{5} a^{2} + \frac{1}{5} a + \frac{1}{5}$, $\frac{1}{5} a^{17} + \frac{1}{5} a^{14} - \frac{2}{5} a^{13} - \frac{2}{5} a^{12} - \frac{1}{5} a^{11} - \frac{2}{5} a^{10} + \frac{2}{5} a^{9} - \frac{1}{5} a^{8} - \frac{1}{5} a^{6} - \frac{2}{5} a^{5} - \frac{2}{5} a^{4} + \frac{1}{5} a^{3} + \frac{2}{5} a^{2} + \frac{2}{5} a + \frac{1}{5}$, $\frac{1}{123717670} a^{18} - \frac{906592}{12371767} a^{17} + \frac{11636193}{123717670} a^{16} - \frac{1709023}{3638755} a^{15} + \frac{51002981}{123717670} a^{14} - \frac{988131}{61858835} a^{13} - \frac{34544777}{123717670} a^{12} + \frac{17854419}{61858835} a^{11} - \frac{16188271}{123717670} a^{10} - \frac{19673512}{61858835} a^{9} - \frac{58042331}{123717670} a^{8} + \frac{30226186}{61858835} a^{7} - \frac{7937165}{24743534} a^{6} - \frac{988131}{61858835} a^{5} + \frac{9594231}{24743534} a^{4} - \frac{981272}{3638755} a^{3} + \frac{7570175}{24743534} a^{2} + \frac{7838807}{61858835} a + \frac{24743533}{123717670}$, $\frac{1}{247435340} a^{19} - \frac{1}{247435340} a^{18} - \frac{15677613}{247435340} a^{17} + \frac{4041421}{247435340} a^{16} - \frac{103461773}{247435340} a^{15} + \frac{39351437}{247435340} a^{14} + \frac{77722777}{247435340} a^{13} + \frac{6513695}{49487068} a^{12} + \frac{3976947}{247435340} a^{11} - \frac{47077067}{247435340} a^{10} - \frac{5265681}{49487068} a^{9} - \frac{105022323}{247435340} a^{8} + \frac{4673737}{14555020} a^{7} + \frac{75394703}{247435340} a^{6} + \frac{36521039}{247435340} a^{5} + \frac{73770257}{247435340} a^{4} + \frac{106077927}{247435340} a^{3} + \frac{27760013}{247435340} a^{2} - \frac{27313807}{247435340} a - \frac{33809453}{247435340}$
Class group and class number
Trivial group, which has order $1$
Unit group
| Rank: | $11$ | magma: UnitRank(K);
sage: UK.rank()
gp: K.fu
| |
| Torsion generator: | \( -1 \) (order $2$) | magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
sage: UK.torsion_generator()
gp: K.tu[2]
| |
| Fundamental units: | Units are too long to display, but can be downloaded with other data for this field from 'Stored data to gp' link to the right | magma: [K!f(g): g in Generators(UK)];
sage: UK.fundamental_units()
gp: K.fu
| |
| Regulator: | \( 58377.9345442 \) | magma: Regulator(K);
sage: K.regulator()
gp: K.reg
|
Galois group
$C_4\times F_5$ (as 20T20):
| A solvable group of order 80 |
| The 20 conjugacy class representatives for $C_4\times F_5$ |
| Character table for $C_4\times F_5$ |
Intermediate fields
| \(\Q(\sqrt{2}) \), \(\Q(\zeta_{16})^+\), 5.1.256000.1, 10.2.524288000000.1 |
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Sibling fields
Frobenius cycle types
| $p$ | 2 | 3 | 5 | 7 | 11 | 13 | 17 | 19 | 23 | 29 | 31 | 37 | 41 | 43 | 47 | 53 | 59 |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Cycle type | R | $20$ | R | ${\href{/LocalNumberField/7.4.0.1}{4} }^{4}{,}\,{\href{/LocalNumberField/7.2.0.1}{2} }^{2}$ | ${\href{/LocalNumberField/11.4.0.1}{4} }^{5}$ | $20$ | ${\href{/LocalNumberField/17.4.0.1}{4} }^{4}{,}\,{\href{/LocalNumberField/17.1.0.1}{1} }^{4}$ | ${\href{/LocalNumberField/19.4.0.1}{4} }^{5}$ | ${\href{/LocalNumberField/23.4.0.1}{4} }^{4}{,}\,{\href{/LocalNumberField/23.2.0.1}{2} }^{2}$ | ${\href{/LocalNumberField/29.4.0.1}{4} }^{5}$ | ${\href{/LocalNumberField/31.5.0.1}{5} }^{4}$ | $20$ | ${\href{/LocalNumberField/41.2.0.1}{2} }^{10}$ | ${\href{/LocalNumberField/43.4.0.1}{4} }^{5}$ | ${\href{/LocalNumberField/47.4.0.1}{4} }^{4}{,}\,{\href{/LocalNumberField/47.1.0.1}{1} }^{4}$ | ${\href{/LocalNumberField/53.4.0.1}{4} }^{5}$ | ${\href{/LocalNumberField/59.4.0.1}{4} }^{5}$ |
In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
| $p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
|---|---|---|---|---|---|---|---|
| 2 | Data not computed | ||||||
| 5 | Data not computed | ||||||