Normalized defining polynomial
\( x^{20} - 6 x^{19} + 11 x^{18} + x^{17} - 8 x^{16} - 42 x^{15} - 54 x^{14} + 460 x^{13} - 141 x^{12} - 1563 x^{11} + 2133 x^{10} - 91 x^{9} - 1379 x^{8} + 1233 x^{7} - 2385 x^{6} + 4777 x^{5} - 5594 x^{4} + 4008 x^{3} - 1728 x^{2} + 400 x - 32 \)
Invariants
| Degree: | $20$ | magma: Degree(K);
sage: K.degree()
gp: poldegree(K.pol)
| |
| Signature: | $[4, 8]$ | magma: Signature(K);
sage: K.signature()
gp: K.sign
| |
| Discriminant: | \(8708207022330414958663524081=3^{4}\cdot 401^{10}\) | magma: Discriminant(Integers(K));
sage: K.disc()
gp: K.disc
| |
| Root discriminant: | $24.95$ | magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
sage: (K.disc().abs())^(1./K.degree())
gp: abs(K.disc)^(1/poldegree(K.pol))
| |
| Ramified primes: | $3, 401$ | magma: PrimeDivisors(Discriminant(Integers(K)));
sage: K.disc().support()
gp: factor(abs(K.disc))[,1]~
| |
| This field is not Galois over $\Q$. | |||
| This is not a CM field. | |||
Integral basis (with respect to field generator \(a\))
$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $a^{6}$, $a^{7}$, $a^{8}$, $a^{9}$, $a^{10}$, $a^{11}$, $a^{12}$, $a^{13}$, $\frac{1}{3} a^{14} + \frac{1}{3} a^{13} + \frac{1}{3} a^{11} - \frac{1}{3} a^{10} + \frac{1}{3} a^{9} - \frac{1}{3} a^{8} - \frac{1}{3} a^{7} + \frac{1}{3} a^{6} + \frac{1}{3} a^{5} + \frac{1}{3} a^{4} + \frac{1}{3}$, $\frac{1}{3} a^{15} - \frac{1}{3} a^{13} + \frac{1}{3} a^{12} + \frac{1}{3} a^{11} - \frac{1}{3} a^{10} + \frac{1}{3} a^{9} - \frac{1}{3} a^{7} - \frac{1}{3} a^{4} + \frac{1}{3} a - \frac{1}{3}$, $\frac{1}{12} a^{16} - \frac{1}{6} a^{15} - \frac{1}{12} a^{14} - \frac{1}{4} a^{13} - \frac{1}{3} a^{12} - \frac{1}{2} a^{11} - \frac{1}{2} a^{10} + \frac{1}{3} a^{9} - \frac{1}{12} a^{8} + \frac{5}{12} a^{7} - \frac{1}{4} a^{6} + \frac{5}{12} a^{5} + \frac{5}{12} a^{4} - \frac{1}{4} a^{3} - \frac{5}{12} a^{2} - \frac{1}{4} a + \frac{1}{6}$, $\frac{1}{16176} a^{17} + \frac{23}{674} a^{16} + \frac{655}{16176} a^{15} + \frac{1483}{16176} a^{14} + \frac{3895}{8088} a^{13} + \frac{1775}{8088} a^{12} - \frac{731}{2696} a^{11} + \frac{137}{2022} a^{10} + \frac{2875}{16176} a^{9} - \frac{1339}{5392} a^{8} + \frac{3523}{16176} a^{7} + \frac{7715}{16176} a^{6} + \frac{905}{5392} a^{5} - \frac{6257}{16176} a^{4} - \frac{2315}{16176} a^{3} - \frac{7549}{16176} a^{2} + \frac{1979}{4044} a - \frac{839}{4044}$, $\frac{1}{194112} a^{18} + \frac{1}{97056} a^{17} + \frac{4399}{194112} a^{16} - \frac{8287}{194112} a^{15} - \frac{573}{5392} a^{14} - \frac{5243}{97056} a^{13} + \frac{29861}{97056} a^{12} + \frac{22361}{48528} a^{11} + \frac{9371}{194112} a^{10} - \frac{3601}{64704} a^{9} - \frac{46375}{194112} a^{8} - \frac{3461}{64704} a^{7} + \frac{8179}{64704} a^{6} - \frac{21745}{64704} a^{5} + \frac{19417}{64704} a^{4} + \frac{3973}{194112} a^{3} - \frac{1651}{10784} a^{2} + \frac{5287}{48528} a + \frac{4261}{24264}$, $\frac{1}{441047127087283968} a^{19} + \frac{60506188511}{110261781771820992} a^{18} + \frac{13007817162019}{441047127087283968} a^{17} - \frac{18265952741528185}{441047127087283968} a^{16} + \frac{9446662762226065}{73507854514547328} a^{15} + \frac{21423324662675}{157180016780928} a^{14} + \frac{90260905880425127}{220523563543641984} a^{13} + \frac{19023278669231797}{55130890885910496} a^{12} + \frac{157598839609794563}{441047127087283968} a^{11} - \frac{11414724119079943}{147015709029094656} a^{10} + \frac{133880204856438539}{441047127087283968} a^{9} - \frac{52526368809902903}{147015709029094656} a^{8} + \frac{2295357993039191}{6391987349091072} a^{7} - \frac{52708661915952227}{147015709029094656} a^{6} + \frac{2484558710441177}{6391987349091072} a^{5} - \frac{108424263632124605}{441047127087283968} a^{4} + \frac{14738183493528769}{36753927257273664} a^{3} + \frac{312367923861983}{13782722721477624} a^{2} - \frac{1524842891467357}{6891361360738812} a - \frac{1347814544555727}{3062827271439472}$
Class group and class number
Trivial group, which has order $1$
Unit group
| Rank: | $11$ | magma: UnitRank(K);
sage: UK.rank()
gp: K.fu
| |
| Torsion generator: | \( -1 \) (order $2$) | magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
sage: UK.torsion_generator()
gp: K.tu[2]
| |
| Fundamental units: | Units are too long to display, but can be downloaded with other data for this field from 'Stored data to gp' link to the right | magma: [K!f(g): g in Generators(UK)];
sage: UK.fundamental_units()
gp: K.fu
| |
| Regulator: | \( 1169621.82282 \) | magma: Regulator(K);
sage: K.regulator()
gp: K.reg
|
Galois group
$C_2^4:D_5$ (as 20T43):
| A solvable group of order 160 |
| The 10 conjugacy class representatives for $C_2^4:D_5$ |
| Character table for $C_2^4:D_5$ |
Intermediate fields
| \(\Q(\sqrt{401}) \), 5.5.160801.1 x5, 10.2.232712654409.1, 10.2.93317774418009.3, 10.10.10368641602001.1 |
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Sibling fields
| Degree 10 siblings: | data not computed |
| Degree 16 sibling: | data not computed |
| Degree 20 siblings: | data not computed |
| Degree 32 sibling: | data not computed |
| Degree 40 siblings: | data not computed |
Frobenius cycle types
| $p$ | 2 | 3 | 5 | 7 | 11 | 13 | 17 | 19 | 23 | 29 | 31 | 37 | 41 | 43 | 47 | 53 | 59 |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Cycle type | ${\href{/LocalNumberField/2.5.0.1}{5} }^{4}$ | R | ${\href{/LocalNumberField/5.5.0.1}{5} }^{4}$ | ${\href{/LocalNumberField/7.5.0.1}{5} }^{4}$ | ${\href{/LocalNumberField/11.5.0.1}{5} }^{4}$ | ${\href{/LocalNumberField/13.4.0.1}{4} }^{2}{,}\,{\href{/LocalNumberField/13.2.0.1}{2} }^{6}$ | ${\href{/LocalNumberField/17.4.0.1}{4} }^{4}{,}\,{\href{/LocalNumberField/17.2.0.1}{2} }^{2}$ | ${\href{/LocalNumberField/19.4.0.1}{4} }^{4}{,}\,{\href{/LocalNumberField/19.2.0.1}{2} }^{2}$ | ${\href{/LocalNumberField/23.2.0.1}{2} }^{10}$ | ${\href{/LocalNumberField/29.5.0.1}{5} }^{4}$ | ${\href{/LocalNumberField/31.4.0.1}{4} }^{2}{,}\,{\href{/LocalNumberField/31.2.0.1}{2} }^{6}$ | ${\href{/LocalNumberField/37.4.0.1}{4} }^{2}{,}\,{\href{/LocalNumberField/37.2.0.1}{2} }^{6}$ | ${\href{/LocalNumberField/41.5.0.1}{5} }^{4}$ | ${\href{/LocalNumberField/43.5.0.1}{5} }^{4}$ | ${\href{/LocalNumberField/47.5.0.1}{5} }^{4}$ | ${\href{/LocalNumberField/53.2.0.1}{2} }^{10}$ | ${\href{/LocalNumberField/59.4.0.1}{4} }^{2}{,}\,{\href{/LocalNumberField/59.2.0.1}{2} }^{6}$ |
In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
| $p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
|---|---|---|---|---|---|---|---|
| $3$ | 3.2.0.1 | $x^{2} - x + 2$ | $1$ | $2$ | $0$ | $C_2$ | $[\ ]^{2}$ |
| 3.2.0.1 | $x^{2} - x + 2$ | $1$ | $2$ | $0$ | $C_2$ | $[\ ]^{2}$ | |
| 3.4.0.1 | $x^{4} - x + 2$ | $1$ | $4$ | $0$ | $C_4$ | $[\ ]^{4}$ | |
| 3.4.2.2 | $x^{4} - 3 x^{2} + 18$ | $2$ | $2$ | $2$ | $C_4$ | $[\ ]_{2}^{2}$ | |
| 3.4.0.1 | $x^{4} - x + 2$ | $1$ | $4$ | $0$ | $C_4$ | $[\ ]^{4}$ | |
| 3.4.2.2 | $x^{4} - 3 x^{2} + 18$ | $2$ | $2$ | $2$ | $C_4$ | $[\ ]_{2}^{2}$ | |
| 401 | Data not computed | ||||||