Normalized defining polynomial
\( x^{20} - x^{19} - x^{18} + 11 x^{17} - 13 x^{16} + 36 x^{15} - 6 x^{14} + 63 x^{12} + 101 x^{11} + 83 x^{10} + 60 x^{9} + 328 x^{8} - 388 x^{7} + 1076 x^{6} + 114 x^{5} + 121 x^{4} - 84 x^{3} - 16 x + 4 \)
Invariants
| Degree: | $20$ | magma: Degree(K);
sage: K.degree()
gp: poldegree(K.pol)
| |
| Signature: | $[4, 8]$ | magma: Signature(K);
sage: K.signature()
gp: K.sign
| |
| Discriminant: | \(842282596413217092613998736=2^{4}\cdot 149^{6}\cdot 1481^{4}\) | magma: Discriminant(Integers(K));
sage: K.disc()
gp: K.disc
| |
| Root discriminant: | $22.20$ | magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
sage: (K.disc().abs())^(1./K.degree())
gp: abs(K.disc)^(1/poldegree(K.pol))
| |
| Ramified primes: | $2, 149, 1481$ | magma: PrimeDivisors(Discriminant(Integers(K)));
sage: K.disc().support()
gp: factor(abs(K.disc))[,1]~
| |
| This field is not Galois over $\Q$. | |||
| This is not a CM field. | |||
Integral basis (with respect to field generator \(a\))
$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $a^{6}$, $a^{7}$, $a^{8}$, $a^{9}$, $a^{10}$, $a^{11}$, $a^{12}$, $a^{13}$, $a^{14}$, $a^{15}$, $a^{16}$, $a^{17}$, $\frac{1}{8} a^{18} - \frac{3}{8} a^{17} - \frac{1}{8} a^{16} - \frac{1}{8} a^{15} + \frac{3}{8} a^{14} - \frac{1}{2} a^{13} - \frac{1}{8} a^{10} - \frac{1}{8} a^{9} + \frac{3}{8} a^{8} - \frac{1}{2} a^{7} - \frac{1}{4} a^{6} + \frac{1}{4} a^{3} - \frac{3}{8} a^{2} - \frac{1}{4} a - \frac{1}{4}$, $\frac{1}{18547334264171099696823728} a^{19} + \frac{1064381865838103313267483}{18547334264171099696823728} a^{18} - \frac{7406960573889200330287627}{18547334264171099696823728} a^{17} + \frac{3813936713420256404515649}{18547334264171099696823728} a^{16} - \frac{3377043493244425746554963}{18547334264171099696823728} a^{15} + \frac{3434937049702225766929463}{9273667132085549848411864} a^{14} + \frac{692856779232423951459495}{2318416783021387462102966} a^{13} - \frac{730878060474250034964887}{2318416783021387462102966} a^{12} + \frac{3388922019399058786669903}{18547334264171099696823728} a^{11} + \frac{5449278920671655187703193}{18547334264171099696823728} a^{10} + \frac{6111675842468359693017581}{18547334264171099696823728} a^{9} - \frac{3288619871934986844460077}{9273667132085549848411864} a^{8} - \frac{2746007426092236119580053}{9273667132085549848411864} a^{7} - \frac{1209774816463728519468565}{4636833566042774924205932} a^{6} + \frac{44965131016845041368278}{1159208391510693731051483} a^{5} + \frac{3523592214228107034757225}{9273667132085549848411864} a^{4} - \frac{6871294932749013074435999}{18547334264171099696823728} a^{3} + \frac{1329708205177109355181955}{4636833566042774924205932} a^{2} + \frac{1086583500044791742016837}{9273667132085549848411864} a + \frac{1683517254268843392637961}{4636833566042774924205932}$
Class group and class number
Trivial group, which has order $1$ (assuming GRH)
Unit group
| Rank: | $11$ | magma: UnitRank(K);
sage: UK.rank()
gp: K.fu
| |
| Torsion generator: | \( -1 \) (order $2$) | magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
sage: UK.torsion_generator()
gp: K.tu[2]
| |
| Fundamental units: | Units are too long to display, but can be downloaded with other data for this field from 'Stored data to gp' link to the right (assuming GRH) | magma: [K!f(g): g in Generators(UK)];
sage: UK.fundamental_units()
gp: K.fu
| |
| Regulator: | \( 347237.100434 \) (assuming GRH) | magma: Regulator(K);
sage: K.regulator()
gp: K.reg
|
Galois group
| A non-solvable group of order 61440 |
| The 126 conjugacy class representatives for t20n669 are not computed |
| Character table for t20n669 is not computed |
Intermediate fields
| 5.5.220669.1, 10.4.29022105306356.1, 10.6.48694807561.1, 10.4.29022105306356.2 |
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Sibling fields
Frobenius cycle types
| $p$ | 2 | 3 | 5 | 7 | 11 | 13 | 17 | 19 | 23 | 29 | 31 | 37 | 41 | 43 | 47 | 53 | 59 |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Cycle type | R | ${\href{/LocalNumberField/3.5.0.1}{5} }^{4}$ | ${\href{/LocalNumberField/5.6.0.1}{6} }^{2}{,}\,{\href{/LocalNumberField/5.2.0.1}{2} }^{4}$ | ${\href{/LocalNumberField/7.10.0.1}{10} }^{2}$ | ${\href{/LocalNumberField/11.5.0.1}{5} }^{4}$ | ${\href{/LocalNumberField/13.6.0.1}{6} }^{2}{,}\,{\href{/LocalNumberField/13.4.0.1}{4} }^{2}$ | ${\href{/LocalNumberField/17.5.0.1}{5} }^{4}$ | ${\href{/LocalNumberField/19.6.0.1}{6} }^{2}{,}\,{\href{/LocalNumberField/19.4.0.1}{4} }^{2}$ | ${\href{/LocalNumberField/23.6.0.1}{6} }^{2}{,}\,{\href{/LocalNumberField/23.4.0.1}{4} }^{2}$ | ${\href{/LocalNumberField/29.6.0.1}{6} }^{2}{,}\,{\href{/LocalNumberField/29.4.0.1}{4} }^{2}$ | ${\href{/LocalNumberField/31.8.0.1}{8} }^{2}{,}\,{\href{/LocalNumberField/31.2.0.1}{2} }^{2}$ | ${\href{/LocalNumberField/37.4.0.1}{4} }^{2}{,}\,{\href{/LocalNumberField/37.2.0.1}{2} }^{6}$ | ${\href{/LocalNumberField/41.4.0.1}{4} }^{2}{,}\,{\href{/LocalNumberField/41.2.0.1}{2} }^{6}$ | ${\href{/LocalNumberField/43.3.0.1}{3} }^{4}{,}\,{\href{/LocalNumberField/43.2.0.1}{2} }^{4}$ | ${\href{/LocalNumberField/47.3.0.1}{3} }^{4}{,}\,{\href{/LocalNumberField/47.2.0.1}{2} }^{4}$ | ${\href{/LocalNumberField/53.8.0.1}{8} }^{2}{,}\,{\href{/LocalNumberField/53.2.0.1}{2} }^{2}$ | ${\href{/LocalNumberField/59.5.0.1}{5} }^{4}$ |
In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
| $p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
|---|---|---|---|---|---|---|---|
| $2$ | 2.4.4.1 | $x^{4} + 8 x^{2} + 4$ | $2$ | $2$ | $4$ | $C_2^2$ | $[2]^{2}$ |
| 2.8.0.1 | $x^{8} + x^{4} + x^{3} + x + 1$ | $1$ | $8$ | $0$ | $C_8$ | $[\ ]^{8}$ | |
| 2.8.0.1 | $x^{8} + x^{4} + x^{3} + x + 1$ | $1$ | $8$ | $0$ | $C_8$ | $[\ ]^{8}$ | |
| $149$ | 149.4.0.1 | $x^{4} - x + 2$ | $1$ | $4$ | $0$ | $C_4$ | $[\ ]^{4}$ |
| 149.4.2.1 | $x^{4} + 745 x^{2} + 199809$ | $2$ | $2$ | $2$ | $C_2^2$ | $[\ ]_{2}^{2}$ | |
| 149.4.0.1 | $x^{4} - x + 2$ | $1$ | $4$ | $0$ | $C_4$ | $[\ ]^{4}$ | |
| 149.4.2.1 | $x^{4} + 745 x^{2} + 199809$ | $2$ | $2$ | $2$ | $C_2^2$ | $[\ ]_{2}^{2}$ | |
| 149.4.2.1 | $x^{4} + 745 x^{2} + 199809$ | $2$ | $2$ | $2$ | $C_2^2$ | $[\ ]_{2}^{2}$ | |
| 1481 | Data not computed | ||||||