Normalized defining polynomial
\( x^{20} - 2 x^{19} - 6 x^{18} - 40 x^{17} + 42 x^{16} + 148 x^{15} + 358 x^{14} - 294 x^{13} + 2428 x^{12} + 12630 x^{11} + 20819 x^{10} - 35474 x^{9} - 210554 x^{8} - 467528 x^{7} - 574374 x^{6} - 350538 x^{5} - 101396 x^{4} + 9920 x^{3} + 46712 x^{2} + 22468 x + 991 \)
Invariants
| Degree: | $20$ | magma: Degree(K);
sage: K.degree()
gp: poldegree(K.pol)
| |
| Signature: | $[4, 8]$ | magma: Signature(K);
sage: K.signature()
gp: K.sign
| |
| Discriminant: | \(82802905234194108120391845703125=3^{10}\cdot 5^{15}\cdot 11^{16}\) | magma: Discriminant(Integers(K));
sage: K.disc()
gp: K.disc
| |
| Root discriminant: | $39.44$ | magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
sage: (K.disc().abs())^(1./K.degree())
gp: abs(K.disc)^(1/poldegree(K.pol))
| |
| Ramified primes: | $3, 5, 11$ | magma: PrimeDivisors(Discriminant(Integers(K)));
sage: K.disc().support()
gp: factor(abs(K.disc))[,1]~
| |
| This field is not Galois over $\Q$. | |||
| This is not a CM field. | |||
Integral basis (with respect to field generator \(a\))
$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $a^{6}$, $a^{7}$, $a^{8}$, $a^{9}$, $\frac{1}{2} a^{10} - \frac{1}{2} a^{5} - \frac{1}{2}$, $\frac{1}{2} a^{11} - \frac{1}{2} a^{6} - \frac{1}{2} a$, $\frac{1}{10} a^{12} + \frac{1}{5} a^{11} - \frac{1}{5} a^{9} - \frac{1}{5} a^{8} - \frac{3}{10} a^{7} + \frac{1}{5} a^{4} + \frac{2}{5} a^{3} - \frac{1}{10} a^{2} + \frac{2}{5} a - \frac{2}{5}$, $\frac{1}{10} a^{13} + \frac{1}{10} a^{11} - \frac{1}{5} a^{10} + \frac{1}{5} a^{9} + \frac{1}{10} a^{8} - \frac{2}{5} a^{7} - \frac{1}{2} a^{6} + \frac{1}{5} a^{5} + \frac{1}{10} a^{3} - \frac{2}{5} a^{2} + \frac{3}{10} a - \frac{1}{5}$, $\frac{1}{10} a^{14} + \frac{1}{10} a^{11} + \frac{1}{5} a^{10} + \frac{3}{10} a^{9} - \frac{1}{5} a^{8} - \frac{1}{5} a^{7} - \frac{3}{10} a^{6} - \frac{1}{10} a^{4} + \frac{1}{5} a^{3} + \frac{2}{5} a^{2} - \frac{1}{10} a + \frac{2}{5}$, $\frac{1}{10} a^{15} - \frac{1}{5} a^{10} + \frac{2}{5} a^{5} - \frac{1}{10}$, $\frac{1}{50} a^{16} - \frac{1}{25} a^{13} + \frac{1}{25} a^{12} - \frac{1}{5} a^{11} - \frac{1}{50} a^{10} - \frac{4}{25} a^{9} + \frac{2}{25} a^{8} + \frac{6}{25} a^{7} + \frac{12}{25} a^{6} + \frac{11}{50} a^{5} + \frac{12}{25} a^{4} + \frac{8}{25} a^{3} + \frac{3}{25} a^{2} + \frac{11}{50} a - \frac{19}{50}$, $\frac{1}{50} a^{17} - \frac{1}{25} a^{14} + \frac{1}{25} a^{13} - \frac{3}{25} a^{11} - \frac{4}{25} a^{10} - \frac{8}{25} a^{9} - \frac{4}{25} a^{8} - \frac{3}{25} a^{7} - \frac{7}{25} a^{6} + \frac{12}{25} a^{5} - \frac{7}{25} a^{4} - \frac{2}{25} a^{3} + \frac{1}{50} a^{2} - \frac{2}{25} a + \frac{1}{5}$, $\frac{1}{264250} a^{18} - \frac{1311}{264250} a^{17} - \frac{871}{264250} a^{16} + \frac{4639}{132125} a^{15} - \frac{5083}{132125} a^{14} - \frac{172}{5285} a^{13} - \frac{3534}{132125} a^{12} - \frac{257}{264250} a^{11} + \frac{593}{264250} a^{10} - \frac{17517}{132125} a^{9} - \frac{12151}{132125} a^{8} + \frac{5667}{26425} a^{7} - \frac{55281}{264250} a^{6} + \frac{7521}{264250} a^{5} + \frac{38198}{132125} a^{4} - \frac{92971}{264250} a^{3} + \frac{9807}{37750} a^{2} - \frac{50801}{132125} a - \frac{881}{264250}$, $\frac{1}{1810184281196593180197275153043372422380750} a^{19} + \frac{168922438175117889834757939861802548}{129298877228328084299805368074526601598625} a^{18} - \frac{726201277529356489704448626893198494361}{129298877228328084299805368074526601598625} a^{17} - \frac{78357068770495097721646079635070339258}{36203685623931863603945503060867448447615} a^{16} - \frac{29292277307854105404921042994032392797521}{905092140598296590098637576521686211190375} a^{15} + \frac{30202820038238113684194572525290478447981}{905092140598296590098637576521686211190375} a^{14} - \frac{37408616866905852938474094306136171017813}{1810184281196593180197275153043372422380750} a^{13} - \frac{11831224651797955148223974726642172981871}{1810184281196593180197275153043372422380750} a^{12} - \frac{436766984709534581620800164045961619928643}{1810184281196593180197275153043372422380750} a^{11} - \frac{6119794199247582220521347128858546105602}{181018428119659318019727515304337242238075} a^{10} + \frac{286883339288148285977096403506265013331988}{905092140598296590098637576521686211190375} a^{9} + \frac{564029035144830568516444591031638349926899}{1810184281196593180197275153043372422380750} a^{8} + \frac{827279249570464260611412237857163575830779}{1810184281196593180197275153043372422380750} a^{7} - \frac{408229011504823735419498141419716215093537}{1810184281196593180197275153043372422380750} a^{6} - \frac{209495504783088027306201099871479796472438}{905092140598296590098637576521686211190375} a^{5} - \frac{47696780038982958453115247249029993590913}{1810184281196593180197275153043372422380750} a^{4} - \frac{348836750996080526330312495055223576398549}{1810184281196593180197275153043372422380750} a^{3} - \frac{142644593321417535232983820490443706564923}{362036856239318636039455030608674484476150} a^{2} - \frac{62467992918099883699832900825839161209111}{258597754456656168599610736149053203197250} a + \frac{75069948668814475529029995070697099002621}{905092140598296590098637576521686211190375}$
Class group and class number
$C_{5}$, which has order $5$ (assuming GRH)
Unit group
| Rank: | $11$ | magma: UnitRank(K);
sage: UK.rank()
gp: K.fu
| |
| Torsion generator: | \( -1 \) (order $2$) | magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
sage: UK.torsion_generator()
gp: K.tu[2]
| |
| Fundamental units: | Units are too long to display, but can be downloaded with other data for this field from 'Stored data to gp' link to the right (assuming GRH) | magma: [K!f(g): g in Generators(UK)];
sage: UK.fundamental_units()
gp: K.fu
| |
| Regulator: | \( 32045543.871448386 \) (assuming GRH) | magma: Regulator(K);
sage: K.regulator()
gp: K.reg
|
Galois group
$C_2\times F_5$ (as 20T9):
| A solvable group of order 40 |
| The 10 conjugacy class representatives for $C_2\times F_5$ |
| Character table for $C_2\times F_5$ |
Intermediate fields
| \(\Q(\sqrt{5}) \), \(\Q(\zeta_{15})^+\), 5.1.1830125.1, 10.2.16746787578125.1 |
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Sibling fields
| Galois closure: | data not computed |
| Degree 10 siblings: | data not computed |
| Degree 20 sibling: | data not computed |
Frobenius cycle types
| $p$ | 2 | 3 | 5 | 7 | 11 | 13 | 17 | 19 | 23 | 29 | 31 | 37 | 41 | 43 | 47 | 53 | 59 |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Cycle type | ${\href{/LocalNumberField/2.4.0.1}{4} }^{5}$ | R | R | ${\href{/LocalNumberField/7.4.0.1}{4} }^{5}$ | R | ${\href{/LocalNumberField/13.4.0.1}{4} }^{5}$ | ${\href{/LocalNumberField/17.4.0.1}{4} }^{5}$ | ${\href{/LocalNumberField/19.2.0.1}{2} }^{10}$ | ${\href{/LocalNumberField/23.4.0.1}{4} }^{5}$ | ${\href{/LocalNumberField/29.2.0.1}{2} }^{8}{,}\,{\href{/LocalNumberField/29.1.0.1}{1} }^{4}$ | ${\href{/LocalNumberField/31.5.0.1}{5} }^{4}$ | ${\href{/LocalNumberField/37.4.0.1}{4} }^{5}$ | ${\href{/LocalNumberField/41.10.0.1}{10} }^{2}$ | ${\href{/LocalNumberField/43.4.0.1}{4} }^{5}$ | ${\href{/LocalNumberField/47.4.0.1}{4} }^{5}$ | ${\href{/LocalNumberField/53.4.0.1}{4} }^{5}$ | ${\href{/LocalNumberField/59.2.0.1}{2} }^{8}{,}\,{\href{/LocalNumberField/59.1.0.1}{1} }^{4}$ |
In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
| $p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
|---|---|---|---|---|---|---|---|
| $3$ | 3.4.2.2 | $x^{4} - 3 x^{2} + 18$ | $2$ | $2$ | $2$ | $C_4$ | $[\ ]_{2}^{2}$ |
| 3.8.4.1 | $x^{8} + 36 x^{4} - 27 x^{2} + 324$ | $2$ | $4$ | $4$ | $C_4\times C_2$ | $[\ ]_{2}^{4}$ | |
| 3.8.4.1 | $x^{8} + 36 x^{4} - 27 x^{2} + 324$ | $2$ | $4$ | $4$ | $C_4\times C_2$ | $[\ ]_{2}^{4}$ | |
| $5$ | 5.4.3.1 | $x^{4} - 5$ | $4$ | $1$ | $3$ | $C_4$ | $[\ ]_{4}$ |
| 5.8.6.1 | $x^{8} - 5 x^{4} + 400$ | $4$ | $2$ | $6$ | $C_4\times C_2$ | $[\ ]_{4}^{2}$ | |
| 5.8.6.1 | $x^{8} - 5 x^{4} + 400$ | $4$ | $2$ | $6$ | $C_4\times C_2$ | $[\ ]_{4}^{2}$ | |
| $11$ | 11.10.8.1 | $x^{10} + 220 x^{5} + 41503$ | $5$ | $2$ | $8$ | $C_{10}$ | $[\ ]_{5}^{2}$ |
| 11.10.8.1 | $x^{10} + 220 x^{5} + 41503$ | $5$ | $2$ | $8$ | $C_{10}$ | $[\ ]_{5}^{2}$ |