Properties

Label 20.4.82306730226...1609.4
Degree $20$
Signature $[4, 8]$
Discriminant $11^{18}\cdot 23^{6}$
Root discriminant $22.17$
Ramified primes $11, 23$
Class number $2$
Class group $[2]$
Galois group $C_2^2\times C_2^4:C_5$ (as 20T74)

Related objects

Downloads

Learn more about

Show commands for: Magma / SageMath / Pari/GP

magma: R<x> := PolynomialRing(Rationals()); K<a> := NumberField(R![1, -11, 52, -88, -123, 385, 402, -594, -986, 11, 263, -154, -118, -22, -9, 0, 5, 0, -4, 0, 1]);
 
sage: x = polygen(QQ); K.<a> = NumberField(x^20 - 4*x^18 + 5*x^16 - 9*x^14 - 22*x^13 - 118*x^12 - 154*x^11 + 263*x^10 + 11*x^9 - 986*x^8 - 594*x^7 + 402*x^6 + 385*x^5 - 123*x^4 - 88*x^3 + 52*x^2 - 11*x + 1)
 
gp: K = bnfinit(x^20 - 4*x^18 + 5*x^16 - 9*x^14 - 22*x^13 - 118*x^12 - 154*x^11 + 263*x^10 + 11*x^9 - 986*x^8 - 594*x^7 + 402*x^6 + 385*x^5 - 123*x^4 - 88*x^3 + 52*x^2 - 11*x + 1, 1)
 

Normalized defining polynomial

\( x^{20} - 4 x^{18} + 5 x^{16} - 9 x^{14} - 22 x^{13} - 118 x^{12} - 154 x^{11} + 263 x^{10} + 11 x^{9} - 986 x^{8} - 594 x^{7} + 402 x^{6} + 385 x^{5} - 123 x^{4} - 88 x^{3} + 52 x^{2} - 11 x + 1 \)

magma: DefiningPolynomial(K);
 
sage: K.defining_polynomial()
 
gp: K.pol
 

Invariants

Degree:  $20$
magma: Degree(K);
 
sage: K.degree()
 
gp: poldegree(K.pol)
 
Signature:  $[4, 8]$
magma: Signature(K);
 
sage: K.signature()
 
gp: K.sign
 
Discriminant:  \(823067302269314181883621609=11^{18}\cdot 23^{6}\)
magma: Discriminant(Integers(K));
 
sage: K.disc()
 
gp: K.disc
 
Root discriminant:  $22.17$
magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
 
sage: (K.disc().abs())^(1./K.degree())
 
gp: abs(K.disc)^(1/poldegree(K.pol))
 
Ramified primes:  $11, 23$
magma: PrimeDivisors(Discriminant(Integers(K)));
 
sage: K.disc().support()
 
gp: factor(abs(K.disc))[,1]~
 
This field is not Galois over $\Q$.
This is not a CM field.

Integral basis (with respect to field generator \(a\))

$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $a^{6}$, $a^{7}$, $a^{8}$, $a^{9}$, $a^{10}$, $a^{11}$, $a^{12}$, $a^{13}$, $a^{14}$, $a^{15}$, $a^{16}$, $a^{17}$, $a^{18}$, $\frac{1}{3733881166074905105097839} a^{19} - \frac{1692519505120276256631945}{3733881166074905105097839} a^{18} + \frac{1594890748088534567496316}{3733881166074905105097839} a^{17} - \frac{1575986901592709818569851}{3733881166074905105097839} a^{16} - \frac{803611221897860436591763}{3733881166074905105097839} a^{15} - \frac{146558630189176877237894}{3733881166074905105097839} a^{14} - \frac{1238864198374899801184946}{3733881166074905105097839} a^{13} - \frac{1335423420973351755341729}{3733881166074905105097839} a^{12} + \frac{892828796224163662710415}{3733881166074905105097839} a^{11} + \frac{533082406815351491456977}{3733881166074905105097839} a^{10} - \frac{1076204037624011181817727}{3733881166074905105097839} a^{9} - \frac{1368478858299931261280594}{3733881166074905105097839} a^{8} + \frac{1852106938623804019778550}{3733881166074905105097839} a^{7} - \frac{1402960194870015609561142}{3733881166074905105097839} a^{6} + \frac{352907159020140435306841}{3733881166074905105097839} a^{5} - \frac{1354434109309611292379772}{3733881166074905105097839} a^{4} + \frac{1042922323766072258421282}{3733881166074905105097839} a^{3} - \frac{967607247128877482025182}{3733881166074905105097839} a^{2} - \frac{1669823452355727847386057}{3733881166074905105097839} a - \frac{1259902663348659720383726}{3733881166074905105097839}$

magma: IntegralBasis(K);
 
sage: K.integral_basis()
 
gp: K.zk
 

Class group and class number

$C_{2}$, which has order $2$

magma: ClassGroup(K);
 
sage: K.class_group().invariants()
 
gp: K.clgp
 

Unit group

magma: UK, f := UnitGroup(K);
 
sage: UK = K.unit_group()
 
Rank:  $11$
magma: UnitRank(K);
 
sage: UK.rank()
 
gp: K.fu
 
Torsion generator:  \( -1 \) (order $2$)
magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
 
sage: UK.torsion_generator()
 
gp: K.tu[2]
 
Fundamental units:  Units are too long to display, but can be downloaded with other data for this field from 'Stored data to gp' link to the right
magma: [K!f(g): g in Generators(UK)];
 
sage: UK.fundamental_units()
 
gp: K.fu
 
Regulator:  \( 158801.256052 \)
magma: Regulator(K);
 
sage: K.regulator()
 
gp: K.reg
 

Galois group

$C_2^2\times C_2^4:C_5$ (as 20T74):

magma: GaloisGroup(K);
 
sage: K.galois_group(type='pari')
 
gp: polgalois(K.pol)
 
A solvable group of order 320
The 32 conjugacy class representatives for $C_2^2\times C_2^4:C_5$
Character table for $C_2^2\times C_2^4:C_5$ is not computed

Intermediate fields

\(\Q(\zeta_{11})^+\), 10.4.1247354328539.1, 10.6.54232796893.1, 10.4.2608104505127.1

Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.

Sibling fields

Degree 20 siblings: data not computed
Degree 40 siblings: data not computed
Arithmetically equvalently siblings: data not computed

Frobenius cycle types

$p$ 2 3 5 7 11 13 17 19 23 29 31 37 41 43 47 53 59
Cycle type ${\href{/LocalNumberField/2.10.0.1}{10} }^{2}$ ${\href{/LocalNumberField/3.5.0.1}{5} }^{4}$ ${\href{/LocalNumberField/5.10.0.1}{10} }^{2}$ ${\href{/LocalNumberField/7.10.0.1}{10} }^{2}$ R ${\href{/LocalNumberField/13.10.0.1}{10} }^{2}$ ${\href{/LocalNumberField/17.10.0.1}{10} }^{2}$ ${\href{/LocalNumberField/19.10.0.1}{10} }^{2}$ R ${\href{/LocalNumberField/29.10.0.1}{10} }^{2}$ ${\href{/LocalNumberField/31.5.0.1}{5} }^{4}$ ${\href{/LocalNumberField/37.10.0.1}{10} }^{2}$ ${\href{/LocalNumberField/41.10.0.1}{10} }^{2}$ ${\href{/LocalNumberField/43.2.0.1}{2} }^{4}{,}\,{\href{/LocalNumberField/43.1.0.1}{1} }^{12}$ ${\href{/LocalNumberField/47.5.0.1}{5} }^{4}$ ${\href{/LocalNumberField/53.10.0.1}{10} }^{2}$ ${\href{/LocalNumberField/59.5.0.1}{5} }^{4}$

In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.

magma: p := 7; // to obtain a list of $[e_i,f_i]$ for the factorization of the ideal $p\mathcal{O}_K$:
 
magma: idealfactors := Factorization(p*Integers(K)); // get the data
 
magma: [<primefactor[2], Valuation(Norm(primefactor[1]), p)> : primefactor in idealfactors];
 
sage: p = 7; # to obtain a list of $[e_i,f_i]$ for the factorization of the ideal $p\mathcal{O}_K$:
 
sage: [(e, pr.norm().valuation(p)) for pr,e in K.factor(p)]
 
gp: p = 7; \\ to obtain a list of $[e_i,f_i]$ for the factorization of the ideal $p\mathcal{O}_K$:
 
gp: idealfactors = idealprimedec(K, p); \\ get the data
 
gp: vector(length(idealfactors), j, [idealfactors[j][3], idealfactors[j][4]])
 

Local algebras for ramified primes

$p$LabelPolynomial $e$ $f$ $c$ Galois group Slope content
11Data not computed
$23$$\Q_{23}$$x + 2$$1$$1$$0$Trivial$[\ ]$
$\Q_{23}$$x + 2$$1$$1$$0$Trivial$[\ ]$
$\Q_{23}$$x + 2$$1$$1$$0$Trivial$[\ ]$
$\Q_{23}$$x + 2$$1$$1$$0$Trivial$[\ ]$
23.2.0.1$x^{2} - x + 7$$1$$2$$0$$C_2$$[\ ]^{2}$
23.2.0.1$x^{2} - x + 7$$1$$2$$0$$C_2$$[\ ]^{2}$
23.4.2.1$x^{4} + 299 x^{2} + 25921$$2$$2$$2$$C_2^2$$[\ ]_{2}^{2}$
23.4.2.1$x^{4} + 299 x^{2} + 25921$$2$$2$$2$$C_2^2$$[\ ]_{2}^{2}$
23.4.2.1$x^{4} + 299 x^{2} + 25921$$2$$2$$2$$C_2^2$$[\ ]_{2}^{2}$