Normalized defining polynomial
\( x^{20} - 2 x^{19} + 2 x^{17} - 10 x^{16} + 101 x^{15} - 129 x^{14} + 632 x^{13} + 853 x^{12} + 998 x^{11} + 2603 x^{10} - 5099 x^{9} + 4759 x^{8} - 9811 x^{7} - 26495 x^{6} + 40318 x^{5} - 85758 x^{4} + 83418 x^{3} - 46331 x^{2} + 25091 x - 5141 \)
Invariants
| Degree: | $20$ | magma: Degree(K);
sage: K.degree()
gp: poldegree(K.pol)
| |
| Signature: | $[4, 8]$ | magma: Signature(K);
sage: K.signature()
gp: K.sign
| |
| Discriminant: | \(81999747306239802534561449669632=2^{10}\cdot 61^{6}\cdot 397^{7}\) | magma: Discriminant(Integers(K));
sage: K.disc()
gp: K.disc
| |
| Root discriminant: | $39.42$ | magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
sage: (K.disc().abs())^(1./K.degree())
gp: abs(K.disc)^(1/poldegree(K.pol))
| |
| Ramified primes: | $2, 61, 397$ | magma: PrimeDivisors(Discriminant(Integers(K)));
sage: K.disc().support()
gp: factor(abs(K.disc))[,1]~
| |
| This field is not Galois over $\Q$. | |||
| This is not a CM field. | |||
Integral basis (with respect to field generator \(a\))
$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $a^{6}$, $a^{7}$, $a^{8}$, $a^{9}$, $a^{10}$, $a^{11}$, $\frac{1}{2} a^{12} - \frac{1}{2} a^{7} - \frac{1}{2} a^{6} - \frac{1}{2} a^{2} - \frac{1}{2} a - \frac{1}{2}$, $\frac{1}{2} a^{13} - \frac{1}{2} a^{8} - \frac{1}{2} a^{7} - \frac{1}{2} a^{3} - \frac{1}{2} a^{2} - \frac{1}{2} a$, $\frac{1}{4} a^{14} - \frac{1}{4} a^{12} - \frac{1}{4} a^{9} + \frac{1}{4} a^{8} + \frac{1}{4} a^{7} + \frac{1}{4} a^{6} - \frac{1}{2} a^{5} + \frac{1}{4} a^{4} - \frac{1}{4} a^{3} - \frac{1}{4} a + \frac{1}{4}$, $\frac{1}{4} a^{15} - \frac{1}{4} a^{13} - \frac{1}{4} a^{10} + \frac{1}{4} a^{9} + \frac{1}{4} a^{8} + \frac{1}{4} a^{7} - \frac{1}{2} a^{6} + \frac{1}{4} a^{5} - \frac{1}{4} a^{4} - \frac{1}{4} a^{2} + \frac{1}{4} a$, $\frac{1}{8} a^{16} - \frac{1}{8} a^{12} + \frac{3}{8} a^{11} - \frac{3}{8} a^{10} - \frac{1}{2} a^{9} - \frac{1}{4} a^{8} + \frac{3}{8} a^{7} - \frac{1}{4} a^{6} + \frac{1}{8} a^{5} + \frac{1}{8} a^{4} - \frac{1}{4} a^{3} + \frac{1}{8} a^{2} - \frac{1}{8} a - \frac{3}{8}$, $\frac{1}{8} a^{17} - \frac{1}{8} a^{13} - \frac{1}{8} a^{12} - \frac{3}{8} a^{11} - \frac{1}{2} a^{10} - \frac{1}{4} a^{9} + \frac{3}{8} a^{8} + \frac{1}{4} a^{7} - \frac{3}{8} a^{6} + \frac{1}{8} a^{5} - \frac{1}{4} a^{4} + \frac{1}{8} a^{3} + \frac{3}{8} a^{2} + \frac{1}{8} a - \frac{1}{2}$, $\frac{1}{16} a^{18} - \frac{1}{16} a^{16} - \frac{1}{16} a^{14} + \frac{3}{16} a^{13} - \frac{1}{8} a^{12} + \frac{1}{16} a^{11} - \frac{7}{16} a^{10} - \frac{1}{16} a^{9} - \frac{1}{2} a^{8} - \frac{1}{8} a^{7} + \frac{3}{16} a^{6} + \frac{5}{16} a^{5} + \frac{1}{16} a^{3} + \frac{1}{4} a^{2} - \frac{7}{16} a - \frac{5}{16}$, $\frac{1}{25370628650445138139627373312737679843653130000} a^{19} - \frac{288160616782480638182409591558091337534730913}{12685314325222569069813686656368839921826565000} a^{18} + \frac{555231574116758792099215944147947298666829999}{25370628650445138139627373312737679843653130000} a^{17} - \frac{19159127379403464632320439371756323155294087}{12685314325222569069813686656368839921826565000} a^{16} - \frac{2846476726265083275815400605362604709185015009}{25370628650445138139627373312737679843653130000} a^{15} - \frac{1255061930505880485162497310302246434642295983}{25370628650445138139627373312737679843653130000} a^{14} + \frac{504784957087424545875706522017459076550417311}{3171328581305642267453421664092209980456641250} a^{13} - \frac{318737739805358963641054148006974754699733171}{5074125730089027627925474662547535968730626000} a^{12} - \frac{12103276215971910414526307531272773313596478377}{25370628650445138139627373312737679843653130000} a^{11} + \frac{692770980696028747692290157972285174829904413}{1492389920614419890566316077219863520214890000} a^{10} - \frac{3031593801126781818621563859710094780254176913}{12685314325222569069813686656368839921826565000} a^{9} + \frac{34898565373417456565691033364263568190892133}{507412573008902762792547466254753596873062600} a^{8} - \frac{652952462244255920133158970061264724705168373}{1492389920614419890566316077219863520214890000} a^{7} + \frac{1615383375128840811343629286459795360503253923}{25370628650445138139627373312737679843653130000} a^{6} + \frac{5221138937684740125249304116102633077791023039}{12685314325222569069813686656368839921826565000} a^{5} + \frac{578043625099692681343517020220843976331783421}{25370628650445138139627373312737679843653130000} a^{4} + \frac{3701313680259965715984224783592806453856558419}{12685314325222569069813686656368839921826565000} a^{3} - \frac{10919712969132603426887797445378459291699009719}{25370628650445138139627373312737679843653130000} a^{2} - \frac{83315328285412787941502088340736838423834231}{202965029203561105117018986501901438749225040} a - \frac{5604867411533893488251074072179384790490175017}{12685314325222569069813686656368839921826565000}$
Class group and class number
Trivial group, which has order $1$ (assuming GRH)
Unit group
| Rank: | $11$ | magma: UnitRank(K);
sage: UK.rank()
gp: K.fu
| |
| Torsion generator: | \( -1 \) (order $2$) | magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
sage: UK.torsion_generator()
gp: K.tu[2]
| |
| Fundamental units: | Units are too long to display, but can be downloaded with other data for this field from 'Stored data to gp' link to the right (assuming GRH) | magma: [K!f(g): g in Generators(UK)];
sage: UK.fundamental_units()
gp: K.fu
| |
| Regulator: | \( 84339553.7826 \) (assuming GRH) | magma: Regulator(K);
sage: K.regulator()
gp: K.reg
|
Galois group
| A non-solvable group of order 1966080 |
| The 265 conjugacy class representatives for t20n991 are not computed |
| Character table for t20n991 is not computed |
Intermediate fields
| 5.5.24217.1, 10.6.14202376626313.1 |
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Sibling fields
Frobenius cycle types
| $p$ | 2 | 3 | 5 | 7 | 11 | 13 | 17 | 19 | 23 | 29 | 31 | 37 | 41 | 43 | 47 | 53 | 59 |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Cycle type | R | ${\href{/LocalNumberField/3.10.0.1}{10} }^{2}$ | ${\href{/LocalNumberField/5.8.0.1}{8} }{,}\,{\href{/LocalNumberField/5.4.0.1}{4} }^{2}{,}\,{\href{/LocalNumberField/5.2.0.1}{2} }^{2}$ | ${\href{/LocalNumberField/7.10.0.1}{10} }{,}\,{\href{/LocalNumberField/7.5.0.1}{5} }^{2}$ | ${\href{/LocalNumberField/11.4.0.1}{4} }^{2}{,}\,{\href{/LocalNumberField/11.3.0.1}{3} }^{4}$ | ${\href{/LocalNumberField/13.12.0.1}{12} }{,}\,{\href{/LocalNumberField/13.2.0.1}{2} }^{4}$ | ${\href{/LocalNumberField/17.6.0.1}{6} }^{2}{,}\,{\href{/LocalNumberField/17.4.0.1}{4} }{,}\,{\href{/LocalNumberField/17.2.0.1}{2} }^{2}$ | ${\href{/LocalNumberField/19.10.0.1}{10} }^{2}$ | ${\href{/LocalNumberField/23.4.0.1}{4} }^{4}{,}\,{\href{/LocalNumberField/23.2.0.1}{2} }^{2}$ | ${\href{/LocalNumberField/29.8.0.1}{8} }{,}\,{\href{/LocalNumberField/29.4.0.1}{4} }^{3}$ | ${\href{/LocalNumberField/31.6.0.1}{6} }^{2}{,}\,{\href{/LocalNumberField/31.4.0.1}{4} }^{2}$ | $16{,}\,{\href{/LocalNumberField/37.2.0.1}{2} }{,}\,{\href{/LocalNumberField/37.1.0.1}{1} }^{2}$ | ${\href{/LocalNumberField/41.8.0.1}{8} }^{2}{,}\,{\href{/LocalNumberField/41.2.0.1}{2} }{,}\,{\href{/LocalNumberField/41.1.0.1}{1} }^{2}$ | ${\href{/LocalNumberField/43.8.0.1}{8} }^{2}{,}\,{\href{/LocalNumberField/43.2.0.1}{2} }^{2}$ | ${\href{/LocalNumberField/47.8.0.1}{8} }{,}\,{\href{/LocalNumberField/47.4.0.1}{4} }^{2}{,}\,{\href{/LocalNumberField/47.2.0.1}{2} }{,}\,{\href{/LocalNumberField/47.1.0.1}{1} }^{2}$ | ${\href{/LocalNumberField/53.3.0.1}{3} }^{4}{,}\,{\href{/LocalNumberField/53.2.0.1}{2} }{,}\,{\href{/LocalNumberField/53.1.0.1}{1} }^{6}$ | ${\href{/LocalNumberField/59.6.0.1}{6} }{,}\,{\href{/LocalNumberField/59.3.0.1}{3} }^{2}{,}\,{\href{/LocalNumberField/59.2.0.1}{2} }^{4}$ |
In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
| $p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
|---|---|---|---|---|---|---|---|
| $2$ | 2.10.10.3 | $x^{10} - 9 x^{8} + 22 x^{6} - 46 x^{4} + 9 x^{2} - 9$ | $2$ | $5$ | $10$ | $C_2^4 : C_5$ | $[2, 2, 2, 2]^{5}$ |
| 2.10.0.1 | $x^{10} - x^{3} + 1$ | $1$ | $10$ | $0$ | $C_{10}$ | $[\ ]^{10}$ | |
| $61$ | $\Q_{61}$ | $x + 2$ | $1$ | $1$ | $0$ | Trivial | $[\ ]$ |
| $\Q_{61}$ | $x + 2$ | $1$ | $1$ | $0$ | Trivial | $[\ ]$ | |
| 61.2.0.1 | $x^{2} - x + 2$ | $1$ | $2$ | $0$ | $C_2$ | $[\ ]^{2}$ | |
| 61.4.0.1 | $x^{4} - x + 2$ | $1$ | $4$ | $0$ | $C_4$ | $[\ ]^{4}$ | |
| 61.4.0.1 | $x^{4} - x + 2$ | $1$ | $4$ | $0$ | $C_4$ | $[\ ]^{4}$ | |
| 61.8.6.1 | $x^{8} - 61 x^{4} + 59536$ | $4$ | $2$ | $6$ | $C_4\times C_2$ | $[\ ]_{4}^{2}$ | |
| 397 | Data not computed | ||||||