Normalized defining polynomial
\( x^{20} - 4 x^{19} + 8 x^{18} - 33 x^{17} + 90 x^{16} - 140 x^{15} + 357 x^{14} - 737 x^{13} + 961 x^{12} - 1545 x^{11} + 2617 x^{10} - 1767 x^{9} - 998 x^{8} + 2299 x^{7} - 4391 x^{6} + 15848 x^{5} - 31388 x^{4} + 29238 x^{3} - 8023 x^{2} - 5187 x + 2861 \)
Invariants
| Degree: | $20$ | magma: Degree(K);
sage: K.degree()
gp: poldegree(K.pol)
| |
| Signature: | $[4, 8]$ | magma: Signature(K);
sage: K.signature()
gp: K.sign
| |
| Discriminant: | \(79692860778363999735970407424=2^{10}\cdot 11^{18}\cdot 241^{3}\) | magma: Discriminant(Integers(K));
sage: K.disc()
gp: K.disc
| |
| Root discriminant: | $27.87$ | magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
sage: (K.disc().abs())^(1./K.degree())
gp: abs(K.disc)^(1/poldegree(K.pol))
| |
| Ramified primes: | $2, 11, 241$ | magma: PrimeDivisors(Discriminant(Integers(K)));
sage: K.disc().support()
gp: factor(abs(K.disc))[,1]~
| |
| This field is not Galois over $\Q$. | |||
| This is not a CM field. | |||
Integral basis (with respect to field generator \(a\))
$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $a^{6}$, $a^{7}$, $a^{8}$, $a^{9}$, $a^{10}$, $a^{11}$, $a^{12}$, $a^{13}$, $a^{14}$, $a^{15}$, $a^{16}$, $a^{17}$, $a^{18}$, $\frac{1}{2119492204796471948929306662991433542213} a^{19} - \frac{720199016757135618687719318460925368734}{2119492204796471948929306662991433542213} a^{18} - \frac{1010211072399847819245686536285457592280}{2119492204796471948929306662991433542213} a^{17} + \frac{1050263769607567680176315843274578596003}{2119492204796471948929306662991433542213} a^{16} - \frac{756888040144257550772346831353323608328}{2119492204796471948929306662991433542213} a^{15} + \frac{5063954172234008402472828090112762225}{2119492204796471948929306662991433542213} a^{14} + \frac{933402561305586491757766611514109132734}{2119492204796471948929306662991433542213} a^{13} - \frac{1055128673107260462090790662731550565001}{2119492204796471948929306662991433542213} a^{12} + \frac{953179435292416205019067789538326264514}{2119492204796471948929306662991433542213} a^{11} - \frac{401602755225943404663329117913978693150}{2119492204796471948929306662991433542213} a^{10} - \frac{963093040506970084475286107186221316965}{2119492204796471948929306662991433542213} a^{9} - \frac{294422217184058343798951187923304247055}{2119492204796471948929306662991433542213} a^{8} - \frac{283272446588849308697321368123184500142}{2119492204796471948929306662991433542213} a^{7} + \frac{1010472786811919657329733991359586298461}{2119492204796471948929306662991433542213} a^{6} - \frac{356651327969797143837569818624542126892}{2119492204796471948929306662991433542213} a^{5} + \frac{98733621435532750799265985704202384447}{2119492204796471948929306662991433542213} a^{4} - \frac{600600481753280538855000333712175182407}{2119492204796471948929306662991433542213} a^{3} + \frac{991233872051013951513058139082211630479}{2119492204796471948929306662991433542213} a^{2} - \frac{204611591150851755462432828727596095392}{2119492204796471948929306662991433542213} a - \frac{627954728094863544194133107327571912652}{2119492204796471948929306662991433542213}$
Class group and class number
Trivial group, which has order $1$ (assuming GRH)
Unit group
| Rank: | $11$ | magma: UnitRank(K);
sage: UK.rank()
gp: K.fu
| |
| Torsion generator: | \( -1 \) (order $2$) | magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
sage: UK.torsion_generator()
gp: K.tu[2]
| |
| Fundamental units: | Units are too long to display, but can be downloaded with other data for this field from 'Stored data to gp' link to the right (assuming GRH) | magma: [K!f(g): g in Generators(UK)];
sage: UK.fundamental_units()
gp: K.fu
| |
| Regulator: | \( 2858560.65785 \) (assuming GRH) | magma: Regulator(K);
sage: K.regulator()
gp: K.reg
|
Galois group
| A solvable group of order 81920 |
| The 332 conjugacy class representatives for t20n747 are not computed |
| Character table for t20n747 is not computed |
Intermediate fields
| \(\Q(\zeta_{11})^+\), 10.6.51660490321.1 |
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Sibling fields
| Degree 20 siblings: | data not computed |
Frobenius cycle types
| $p$ | 2 | 3 | 5 | 7 | 11 | 13 | 17 | 19 | 23 | 29 | 31 | 37 | 41 | 43 | 47 | 53 | 59 |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Cycle type | R | ${\href{/LocalNumberField/3.10.0.1}{10} }^{2}$ | ${\href{/LocalNumberField/5.10.0.1}{10} }^{2}$ | $20$ | R | $20$ | $20$ | $20$ | ${\href{/LocalNumberField/23.4.0.1}{4} }{,}\,{\href{/LocalNumberField/23.2.0.1}{2} }^{6}{,}\,{\href{/LocalNumberField/23.1.0.1}{1} }^{4}$ | ${\href{/LocalNumberField/29.10.0.1}{10} }^{2}$ | $20$ | $20$ | ${\href{/LocalNumberField/41.10.0.1}{10} }^{2}$ | ${\href{/LocalNumberField/43.4.0.1}{4} }^{2}{,}\,{\href{/LocalNumberField/43.2.0.1}{2} }^{3}{,}\,{\href{/LocalNumberField/43.1.0.1}{1} }^{6}$ | ${\href{/LocalNumberField/47.10.0.1}{10} }^{2}$ | ${\href{/LocalNumberField/53.5.0.1}{5} }^{4}$ | ${\href{/LocalNumberField/59.5.0.1}{5} }^{4}$ |
In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
| $p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
|---|---|---|---|---|---|---|---|
| $2$ | 2.10.0.1 | $x^{10} - x^{3} + 1$ | $1$ | $10$ | $0$ | $C_{10}$ | $[\ ]^{10}$ |
| 2.10.10.4 | $x^{10} - 5 x^{8} + 14 x^{6} - 22 x^{4} + 17 x^{2} - 37$ | $2$ | $5$ | $10$ | $C_2 \times (C_2^4 : C_5)$ | $[2, 2, 2, 2]^{10}$ | |
| 11 | Data not computed | ||||||
| 241 | Data not computed | ||||||