Normalized defining polynomial
\( x^{20} - 12 x^{18} - 14 x^{17} + 66 x^{16} + 122 x^{15} - 43 x^{14} - 1110 x^{13} - 2221 x^{12} - 3720 x^{11} - 1617 x^{10} + 9562 x^{9} + 14353 x^{8} + 10942 x^{7} + 12800 x^{6} + 11246 x^{5} + 5906 x^{4} - 392 x^{3} - 3848 x^{2} - 2748 x - 1559 \)
Invariants
| Degree: | $20$ | magma: Degree(K);
sage: K.degree()
gp: poldegree(K.pol)
| |
| Signature: | $[4, 8]$ | magma: Signature(K);
sage: K.signature()
gp: K.sign
| |
| Discriminant: | \(791440955544624095439021483753472=2^{34}\cdot 7^{11}\cdot 13^{12}\) | magma: Discriminant(Integers(K));
sage: K.disc()
gp: K.disc
| |
| Root discriminant: | $44.15$ | magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
sage: (K.disc().abs())^(1./K.degree())
gp: abs(K.disc)^(1/poldegree(K.pol))
| |
| Ramified primes: | $2, 7, 13$ | magma: PrimeDivisors(Discriminant(Integers(K)));
sage: K.disc().support()
gp: factor(abs(K.disc))[,1]~
| |
| This field is not Galois over $\Q$. | |||
| This is not a CM field. | |||
Integral basis (with respect to field generator \(a\))
$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $a^{6}$, $a^{7}$, $a^{8}$, $a^{9}$, $a^{10}$, $a^{11}$, $a^{12}$, $a^{13}$, $\frac{1}{7} a^{14} - \frac{2}{7} a^{13} + \frac{2}{7} a^{12} + \frac{3}{7} a^{11} + \frac{3}{7} a^{10} - \frac{3}{7} a^{9} + \frac{2}{7} a^{6} - \frac{2}{7} a^{5} - \frac{2}{7} a^{4} - \frac{1}{7} a^{3} - \frac{3}{7} a^{2} + \frac{2}{7} a + \frac{2}{7}$, $\frac{1}{7} a^{15} - \frac{2}{7} a^{13} + \frac{2}{7} a^{11} + \frac{3}{7} a^{10} + \frac{1}{7} a^{9} + \frac{2}{7} a^{7} + \frac{2}{7} a^{6} + \frac{1}{7} a^{5} + \frac{2}{7} a^{4} + \frac{2}{7} a^{3} + \frac{3}{7} a^{2} - \frac{1}{7} a - \frac{3}{7}$, $\frac{1}{7} a^{16} + \frac{3}{7} a^{13} - \frac{1}{7} a^{12} + \frac{2}{7} a^{11} + \frac{1}{7} a^{9} + \frac{2}{7} a^{8} + \frac{2}{7} a^{7} - \frac{2}{7} a^{6} - \frac{2}{7} a^{5} - \frac{2}{7} a^{4} + \frac{1}{7} a^{3} + \frac{1}{7} a - \frac{3}{7}$, $\frac{1}{7} a^{17} - \frac{2}{7} a^{13} + \frac{3}{7} a^{12} - \frac{2}{7} a^{11} - \frac{1}{7} a^{10} - \frac{3}{7} a^{9} + \frac{2}{7} a^{8} - \frac{2}{7} a^{7} - \frac{1}{7} a^{6} - \frac{3}{7} a^{5} + \frac{3}{7} a^{3} + \frac{3}{7} a^{2} - \frac{2}{7} a + \frac{1}{7}$, $\frac{1}{11417} a^{18} - \frac{87}{11417} a^{17} + \frac{52}{1631} a^{16} + \frac{425}{11417} a^{15} + \frac{107}{11417} a^{14} + \frac{68}{11417} a^{13} + \frac{746}{11417} a^{12} - \frac{596}{11417} a^{11} - \frac{2549}{11417} a^{10} - \frac{1382}{11417} a^{9} + \frac{440}{11417} a^{8} + \frac{3683}{11417} a^{7} + \frac{1411}{11417} a^{6} + \frac{1238}{11417} a^{5} - \frac{3180}{11417} a^{4} - \frac{531}{1631} a^{3} + \frac{3681}{11417} a^{2} + \frac{4959}{11417} a + \frac{5310}{11417}$, $\frac{1}{1871592219684864476564269008433074445013} a^{19} - \frac{43207788344533582468297747382966583}{1871592219684864476564269008433074445013} a^{18} - \frac{52061169068750769326178210838999802680}{1871592219684864476564269008433074445013} a^{17} - \frac{18415927881860121870690717676150954162}{1871592219684864476564269008433074445013} a^{16} - \frac{90222569790898017064258328922491426329}{1871592219684864476564269008433074445013} a^{15} - \frac{46266722086206893024965121502880144940}{1871592219684864476564269008433074445013} a^{14} - \frac{687056471241743534736867671133023446709}{1871592219684864476564269008433074445013} a^{13} - \frac{451747535094240134546596820874398049710}{1871592219684864476564269008433074445013} a^{12} - \frac{3286562197890926147142672437998174078}{12394650461489168718968668930020360563} a^{11} + \frac{508931194364728162841940009914540964040}{1871592219684864476564269008433074445013} a^{10} - \frac{451321149244933037262669619531728218035}{1871592219684864476564269008433074445013} a^{9} - \frac{914237600727150723291701846044682399360}{1871592219684864476564269008433074445013} a^{8} - \frac{742312531611882651535919420738096638381}{1871592219684864476564269008433074445013} a^{7} + \frac{15070564569082664566593139313182395103}{50583573504996337204439702930623633649} a^{6} + \frac{61297822911439920663665600897705965200}{267370317097837782366324144061867777859} a^{5} - \frac{923482693113041312010288849584626328522}{1871592219684864476564269008433074445013} a^{4} - \frac{448653949353908920198347952664730434174}{1871592219684864476564269008433074445013} a^{3} - \frac{663153522432581244968706701505472619546}{1871592219684864476564269008433074445013} a^{2} + \frac{45675347356700313009133969193072973037}{1871592219684864476564269008433074445013} a + \frac{6660195247157920091882967267983335589}{1871592219684864476564269008433074445013}$
Class group and class number
$C_{2}$, which has order $2$ (assuming GRH)
Unit group
| Rank: | $11$ | magma: UnitRank(K);
sage: UK.rank()
gp: K.fu
| |
| Torsion generator: | \( -1 \) (order $2$) | magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
sage: UK.torsion_generator()
gp: K.tu[2]
| |
| Fundamental units: | Units are too long to display, but can be downloaded with other data for this field from 'Stored data to gp' link to the right (assuming GRH) | magma: [K!f(g): g in Generators(UK)];
sage: UK.fundamental_units()
gp: K.fu
| |
| Regulator: | \( 285555310.173 \) (assuming GRH) | magma: Regulator(K);
sage: K.regulator()
gp: K.reg
|
Galois group
| A solvable group of order 40960 |
| The 124 conjugacy class representatives for t20n633 are not computed |
| Character table for t20n633 is not computed |
Intermediate fields
| \(\Q(\sqrt{2}) \), 5.5.6889792.1, 10.10.379753870426112.1 |
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Sibling fields
Frobenius cycle types
| $p$ | 2 | 3 | 5 | 7 | 11 | 13 | 17 | 19 | 23 | 29 | 31 | 37 | 41 | 43 | 47 | 53 | 59 |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Cycle type | R | ${\href{/LocalNumberField/3.10.0.1}{10} }^{2}$ | ${\href{/LocalNumberField/5.8.0.1}{8} }{,}\,{\href{/LocalNumberField/5.4.0.1}{4} }^{2}{,}\,{\href{/LocalNumberField/5.2.0.1}{2} }^{2}$ | R | ${\href{/LocalNumberField/11.4.0.1}{4} }^{5}$ | R | ${\href{/LocalNumberField/17.10.0.1}{10} }{,}\,{\href{/LocalNumberField/17.5.0.1}{5} }^{2}$ | ${\href{/LocalNumberField/19.8.0.1}{8} }{,}\,{\href{/LocalNumberField/19.4.0.1}{4} }^{3}$ | ${\href{/LocalNumberField/23.4.0.1}{4} }{,}\,{\href{/LocalNumberField/23.2.0.1}{2} }^{8}$ | ${\href{/LocalNumberField/29.4.0.1}{4} }^{4}{,}\,{\href{/LocalNumberField/29.2.0.1}{2} }^{2}$ | ${\href{/LocalNumberField/31.8.0.1}{8} }^{2}{,}\,{\href{/LocalNumberField/31.1.0.1}{1} }^{4}$ | ${\href{/LocalNumberField/37.8.0.1}{8} }^{2}{,}\,{\href{/LocalNumberField/37.2.0.1}{2} }^{2}$ | ${\href{/LocalNumberField/41.8.0.1}{8} }^{2}{,}\,{\href{/LocalNumberField/41.2.0.1}{2} }{,}\,{\href{/LocalNumberField/41.1.0.1}{1} }^{2}$ | $20$ | ${\href{/LocalNumberField/47.4.0.1}{4} }^{4}{,}\,{\href{/LocalNumberField/47.2.0.1}{2} }^{2}$ | ${\href{/LocalNumberField/53.2.0.1}{2} }^{10}$ | ${\href{/LocalNumberField/59.8.0.1}{8} }{,}\,{\href{/LocalNumberField/59.4.0.1}{4} }^{3}$ |
In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
| $p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
|---|---|---|---|---|---|---|---|
| 2 | Data not computed | ||||||
| $7$ | 7.2.1.1 | $x^{2} - 7$ | $2$ | $1$ | $1$ | $C_2$ | $[\ ]_{2}$ |
| 7.2.0.1 | $x^{2} - x + 3$ | $1$ | $2$ | $0$ | $C_2$ | $[\ ]^{2}$ | |
| 7.4.2.2 | $x^{4} - 7 x^{2} + 147$ | $2$ | $2$ | $2$ | $C_4$ | $[\ ]_{2}^{2}$ | |
| 7.4.2.2 | $x^{4} - 7 x^{2} + 147$ | $2$ | $2$ | $2$ | $C_4$ | $[\ ]_{2}^{2}$ | |
| 7.8.6.3 | $x^{8} - 7 x^{4} + 147$ | $4$ | $2$ | $6$ | $C_8:C_2$ | $[\ ]_{4}^{4}$ | |
| $13$ | 13.4.0.1 | $x^{4} + x^{2} - x + 2$ | $1$ | $4$ | $0$ | $C_4$ | $[\ ]^{4}$ |
| 13.8.6.1 | $x^{8} - 13 x^{4} + 2704$ | $4$ | $2$ | $6$ | $C_4\times C_2$ | $[\ ]_{4}^{2}$ | |
| 13.8.6.1 | $x^{8} - 13 x^{4} + 2704$ | $4$ | $2$ | $6$ | $C_4\times C_2$ | $[\ ]_{4}^{2}$ | |