Normalized defining polynomial
\( x^{20} + 10 x^{18} - 5 x^{16} - 140 x^{14} - 20 x^{12} - 306 x^{10} + 920 x^{8} + 1740 x^{6} + 3945 x^{4} + 4760 x^{2} + 784 \)
Invariants
| Degree: | $20$ | magma: Degree(K);
sage: K.degree()
gp: poldegree(K.pol)
| |
| Signature: | $[4, 8]$ | magma: Signature(K);
sage: K.signature()
gp: K.sign
| |
| Discriminant: | \(789529074073600000000000000000000=2^{46}\cdot 5^{20}\cdot 7^{6}\) | magma: Discriminant(Integers(K));
sage: K.disc()
gp: K.disc
| |
| Root discriminant: | $44.14$ | magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
sage: (K.disc().abs())^(1./K.degree())
gp: abs(K.disc)^(1/poldegree(K.pol))
| |
| Ramified primes: | $2, 5, 7$ | magma: PrimeDivisors(Discriminant(Integers(K)));
sage: K.disc().support()
gp: factor(abs(K.disc))[,1]~
| |
| This field is not Galois over $\Q$. | |||
| This is not a CM field. | |||
Integral basis (with respect to field generator \(a\))
$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $a^{6}$, $a^{7}$, $a^{8}$, $a^{9}$, $\frac{1}{5} a^{10} + \frac{2}{5}$, $\frac{1}{5} a^{11} + \frac{2}{5} a$, $\frac{1}{5} a^{12} + \frac{2}{5} a^{2}$, $\frac{1}{5} a^{13} + \frac{2}{5} a^{3}$, $\frac{1}{25} a^{14} - \frac{1}{25} a^{12} - \frac{1}{25} a^{10} - \frac{2}{5} a^{8} + \frac{2}{25} a^{4} + \frac{3}{25} a^{2} - \frac{7}{25}$, $\frac{1}{25} a^{15} - \frac{1}{25} a^{13} - \frac{1}{25} a^{11} - \frac{2}{5} a^{9} + \frac{2}{25} a^{5} + \frac{3}{25} a^{3} - \frac{7}{25} a$, $\frac{1}{25} a^{16} - \frac{2}{25} a^{12} - \frac{1}{25} a^{10} - \frac{2}{5} a^{8} + \frac{2}{25} a^{6} + \frac{1}{5} a^{4} - \frac{4}{25} a^{2} - \frac{12}{25}$, $\frac{1}{100} a^{17} - \frac{1}{50} a^{16} - \frac{1}{50} a^{15} - \frac{1}{20} a^{13} - \frac{3}{50} a^{12} - \frac{1}{25} a^{11} - \frac{2}{25} a^{10} - \frac{2}{5} a^{9} + \frac{1}{5} a^{8} + \frac{1}{50} a^{7} - \frac{1}{25} a^{6} - \frac{6}{25} a^{5} + \frac{2}{5} a^{4} - \frac{1}{5} a^{3} - \frac{3}{25} a^{2} + \frac{17}{100} a - \frac{23}{50}$, $\frac{1}{3548859078800} a^{18} - \frac{153637241}{1774429539400} a^{16} - \frac{13867817433}{709771815760} a^{14} - \frac{1339203597}{31686241775} a^{12} - \frac{1495564169}{177442953940} a^{10} + \frac{307961433151}{1774429539400} a^{8} - \frac{68780135874}{221803692425} a^{6} + \frac{76501550583}{177442953940} a^{4} - \frac{339005023703}{3548859078800} a^{2} + \frac{1457998893}{25348993420}$, $\frac{1}{14195436315200} a^{19} - \frac{1}{7097718157600} a^{18} - \frac{153637241}{7097718157600} a^{17} + \frac{153637241}{3548859078800} a^{16} - \frac{211293450317}{14195436315200} a^{15} - \frac{72615275987}{7097718157600} a^{14} + \frac{3150685696}{31686241775} a^{13} + \frac{1303326634}{31686241775} a^{12} + \frac{205453723883}{3548859078800} a^{11} - \frac{134476542307}{1774429539400} a^{10} - \frac{2531125829889}{7097718157600} a^{9} + \frac{401810382609}{3548859078800} a^{8} - \frac{290583828299}{887214769700} a^{7} - \frac{153023556551}{443607384850} a^{6} - \frac{1462898968061}{3548859078800} a^{5} - \frac{453484934491}{1774429539400} a^{4} - \frac{5023499007719}{14195436315200} a^{3} - \frac{86858065753}{7097718157600} a^{2} + \frac{220221539193}{506979868400} a + \frac{104245576583}{253489934200}$
Class group and class number
Trivial group, which has order $1$ (assuming GRH)
Unit group
| Rank: | $11$ | magma: UnitRank(K);
sage: UK.rank()
gp: K.fu
| |
| Torsion generator: | \( -1 \) (order $2$) | magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
sage: UK.torsion_generator()
gp: K.tu[2]
| |
| Fundamental units: | Units are too long to display, but can be downloaded with other data for this field from 'Stored data to gp' link to the right (assuming GRH) | magma: [K!f(g): g in Generators(UK)];
sage: UK.fundamental_units()
gp: K.fu
| |
| Regulator: | \( 680718297.485 \) (assuming GRH) | magma: Regulator(K);
sage: K.regulator()
gp: K.reg
|
Galois group
| A solvable group of order 204800 |
| The 116 conjugacy class representatives for t20n872 are not computed |
| Character table for t20n872 is not computed |
Intermediate fields
| \(\Q(\sqrt{2}) \), 10.6.15680000000000.1 |
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Sibling fields
Frobenius cycle types
| $p$ | 2 | 3 | 5 | 7 | 11 | 13 | 17 | 19 | 23 | 29 | 31 | 37 | 41 | 43 | 47 | 53 | 59 |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Cycle type | R | ${\href{/LocalNumberField/3.10.0.1}{10} }^{2}$ | R | R | ${\href{/LocalNumberField/11.10.0.1}{10} }^{2}$ | ${\href{/LocalNumberField/13.10.0.1}{10} }^{2}$ | ${\href{/LocalNumberField/17.8.0.1}{8} }^{2}{,}\,{\href{/LocalNumberField/17.1.0.1}{1} }^{4}$ | ${\href{/LocalNumberField/19.4.0.1}{4} }^{4}{,}\,{\href{/LocalNumberField/19.2.0.1}{2} }^{2}$ | ${\href{/LocalNumberField/23.8.0.1}{8} }{,}\,{\href{/LocalNumberField/23.4.0.1}{4} }^{2}{,}\,{\href{/LocalNumberField/23.2.0.1}{2} }{,}\,{\href{/LocalNumberField/23.1.0.1}{1} }^{2}$ | ${\href{/LocalNumberField/29.10.0.1}{10} }^{2}$ | ${\href{/LocalNumberField/31.5.0.1}{5} }^{2}{,}\,{\href{/LocalNumberField/31.2.0.1}{2} }^{4}{,}\,{\href{/LocalNumberField/31.1.0.1}{1} }^{2}$ | ${\href{/LocalNumberField/37.8.0.1}{8} }^{2}{,}\,{\href{/LocalNumberField/37.2.0.1}{2} }^{2}$ | ${\href{/LocalNumberField/41.10.0.1}{10} }{,}\,{\href{/LocalNumberField/41.4.0.1}{4} }{,}\,{\href{/LocalNumberField/41.2.0.1}{2} }^{2}{,}\,{\href{/LocalNumberField/41.1.0.1}{1} }^{2}$ | ${\href{/LocalNumberField/43.8.0.1}{8} }{,}\,{\href{/LocalNumberField/43.4.0.1}{4} }^{3}$ | ${\href{/LocalNumberField/47.4.0.1}{4} }^{4}{,}\,{\href{/LocalNumberField/47.1.0.1}{1} }^{4}$ | ${\href{/LocalNumberField/53.8.0.1}{8} }{,}\,{\href{/LocalNumberField/53.4.0.1}{4} }^{3}$ | ${\href{/LocalNumberField/59.8.0.1}{8} }{,}\,{\href{/LocalNumberField/59.4.0.1}{4} }^{3}$ |
In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
| $p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
|---|---|---|---|---|---|---|---|
| 2 | Data not computed | ||||||
| $5$ | 5.10.10.9 | $x^{10} + 10 x^{8} + 10 x^{6} + 10 x^{5} - 20 x^{4} - 20 x^{2} + 17$ | $5$ | $2$ | $10$ | $F_{5}\times C_2$ | $[5/4]_{4}^{2}$ |
| 5.10.10.9 | $x^{10} + 10 x^{8} + 10 x^{6} + 10 x^{5} - 20 x^{4} - 20 x^{2} + 17$ | $5$ | $2$ | $10$ | $F_{5}\times C_2$ | $[5/4]_{4}^{2}$ | |
| $7$ | 7.2.1.1 | $x^{2} - 7$ | $2$ | $1$ | $1$ | $C_2$ | $[\ ]_{2}$ |
| 7.2.1.1 | $x^{2} - 7$ | $2$ | $1$ | $1$ | $C_2$ | $[\ ]_{2}$ | |
| 7.4.0.1 | $x^{4} + x^{2} - 3 x + 5$ | $1$ | $4$ | $0$ | $C_4$ | $[\ ]^{4}$ | |
| 7.4.2.2 | $x^{4} - 7 x^{2} + 147$ | $2$ | $2$ | $2$ | $C_4$ | $[\ ]_{2}^{2}$ | |
| 7.4.2.2 | $x^{4} - 7 x^{2} + 147$ | $2$ | $2$ | $2$ | $C_4$ | $[\ ]_{2}^{2}$ | |
| 7.4.0.1 | $x^{4} + x^{2} - 3 x + 5$ | $1$ | $4$ | $0$ | $C_4$ | $[\ ]^{4}$ | |