Normalized defining polynomial
\( x^{20} - 22 x^{15} - 6 x^{10} + 22 x^{5} + 1 \)
Invariants
| Degree: | $20$ | magma: Degree(K);
sage: K.degree()
gp: poldegree(K.pol)
| |
| Signature: | $[4, 8]$ | magma: Signature(K);
sage: K.signature()
gp: K.sign
| |
| Discriminant: | \(7812500000000000000000000=2^{20}\cdot 5^{27}\) | magma: Discriminant(Integers(K));
sage: K.disc()
gp: K.disc
| |
| Root discriminant: | $17.56$ | magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
sage: (K.disc().abs())^(1./K.degree())
gp: abs(K.disc)^(1/poldegree(K.pol))
| |
| Ramified primes: | $2, 5$ | magma: PrimeDivisors(Discriminant(Integers(K)));
sage: K.disc().support()
gp: factor(abs(K.disc))[,1]~
| |
| This field is not Galois over $\Q$. | |||
| This is not a CM field. | |||
Integral basis (with respect to field generator \(a\))
$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $a^{6}$, $\frac{1}{5} a^{7} - \frac{1}{5} a^{6} - \frac{1}{5} a^{5} + \frac{2}{5} a^{2} - \frac{2}{5} a - \frac{2}{5}$, $\frac{1}{5} a^{8} - \frac{2}{5} a^{6} - \frac{1}{5} a^{5} + \frac{2}{5} a^{3} + \frac{1}{5} a - \frac{2}{5}$, $\frac{1}{5} a^{9} + \frac{2}{5} a^{6} - \frac{2}{5} a^{5} + \frac{2}{5} a^{4} - \frac{1}{5} a + \frac{1}{5}$, $\frac{1}{10} a^{10} + \frac{2}{5} a^{5} - \frac{1}{10}$, $\frac{1}{10} a^{11} + \frac{2}{5} a^{6} - \frac{1}{10} a$, $\frac{1}{10} a^{12} + \frac{2}{5} a^{6} + \frac{2}{5} a^{5} + \frac{1}{10} a^{2} - \frac{1}{5} a - \frac{1}{5}$, $\frac{1}{10} a^{13} - \frac{1}{5} a^{6} + \frac{2}{5} a^{5} + \frac{1}{10} a^{3} - \frac{2}{5} a - \frac{1}{5}$, $\frac{1}{50} a^{14} - \frac{1}{25} a^{13} - \frac{1}{50} a^{12} + \frac{1}{25} a^{11} + \frac{1}{50} a^{10} + \frac{2}{25} a^{9} + \frac{1}{25} a^{8} - \frac{2}{25} a^{7} - \frac{6}{25} a^{6} - \frac{3}{25} a^{5} - \frac{21}{50} a^{4} + \frac{6}{25} a^{3} + \frac{21}{50} a^{2} + \frac{9}{25} a + \frac{9}{50}$, $\frac{1}{50} a^{15} + \frac{1}{50} a^{10} + \frac{17}{50} a^{5} + \frac{13}{50}$, $\frac{1}{50} a^{16} + \frac{1}{50} a^{11} + \frac{17}{50} a^{6} + \frac{13}{50} a$, $\frac{1}{50} a^{17} + \frac{1}{50} a^{12} - \frac{3}{50} a^{7} + \frac{2}{5} a^{6} + \frac{2}{5} a^{5} + \frac{23}{50} a^{2} - \frac{1}{5} a - \frac{1}{5}$, $\frac{1}{50} a^{18} + \frac{1}{50} a^{13} - \frac{3}{50} a^{8} - \frac{1}{5} a^{6} + \frac{2}{5} a^{5} + \frac{23}{50} a^{3} - \frac{2}{5} a - \frac{1}{5}$, $\frac{1}{50} a^{19} + \frac{1}{25} a^{13} + \frac{1}{50} a^{12} - \frac{1}{25} a^{11} - \frac{1}{50} a^{10} + \frac{3}{50} a^{9} - \frac{1}{25} a^{8} + \frac{2}{25} a^{7} - \frac{4}{25} a^{6} - \frac{12}{25} a^{5} + \frac{7}{25} a^{4} - \frac{6}{25} a^{3} - \frac{21}{50} a^{2} - \frac{4}{25} a - \frac{19}{50}$
Class group and class number
Trivial group, which has order $1$
Unit group
| Rank: | $11$ | magma: UnitRank(K);
sage: UK.rank()
gp: K.fu
| |
| Torsion generator: | \( -1 \) (order $2$) | magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
sage: UK.torsion_generator()
gp: K.tu[2]
| |
| Fundamental units: | Units are too long to display, but can be downloaded with other data for this field from 'Stored data to gp' link to the right | magma: [K!f(g): g in Generators(UK)];
sage: UK.fundamental_units()
gp: K.fu
| |
| Regulator: | \( 44054.0373872 \) | magma: Regulator(K);
sage: K.regulator()
gp: K.reg
|
Galois group
$C_4\times D_5$ (as 20T6):
| A solvable group of order 40 |
| The 16 conjugacy class representatives for $C_4\times D_5$ |
| Character table for $C_4\times D_5$ |
Intermediate fields
| \(\Q(\sqrt{5}) \), \(\Q(\zeta_{20})^+\), 5.1.250000.1, 10.2.312500000000.1 |
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Sibling fields
| Galois closure: | data not computed |
| Degree 20 sibling: | data not computed |
Frobenius cycle types
| $p$ | 2 | 3 | 5 | 7 | 11 | 13 | 17 | 19 | 23 | 29 | 31 | 37 | 41 | 43 | 47 | 53 | 59 |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Cycle type | R | $20$ | R | $20$ | ${\href{/LocalNumberField/11.2.0.1}{2} }^{10}$ | ${\href{/LocalNumberField/13.4.0.1}{4} }^{5}$ | ${\href{/LocalNumberField/17.4.0.1}{4} }^{5}$ | ${\href{/LocalNumberField/19.2.0.1}{2} }^{8}{,}\,{\href{/LocalNumberField/19.1.0.1}{1} }^{4}$ | $20$ | ${\href{/LocalNumberField/29.10.0.1}{10} }^{2}$ | ${\href{/LocalNumberField/31.2.0.1}{2} }^{10}$ | ${\href{/LocalNumberField/37.4.0.1}{4} }^{5}$ | ${\href{/LocalNumberField/41.5.0.1}{5} }^{4}$ | $20$ | $20$ | ${\href{/LocalNumberField/53.4.0.1}{4} }^{5}$ | ${\href{/LocalNumberField/59.2.0.1}{2} }^{8}{,}\,{\href{/LocalNumberField/59.1.0.1}{1} }^{4}$ |
In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
| $p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
|---|---|---|---|---|---|---|---|
| $2$ | 2.4.4.2 | $x^{4} - x^{2} + 5$ | $2$ | $2$ | $4$ | $C_4$ | $[2]^{2}$ |
| 2.8.8.1 | $x^{8} + 28 x^{4} + 144$ | $2$ | $4$ | $8$ | $C_4\times C_2$ | $[2]^{4}$ | |
| 2.8.8.1 | $x^{8} + 28 x^{4} + 144$ | $2$ | $4$ | $8$ | $C_4\times C_2$ | $[2]^{4}$ | |
| 5 | Data not computed | ||||||