Normalized defining polynomial
\( x^{20} - x^{19} - x^{18} - 7 x^{17} - 14 x^{16} + 35 x^{15} + 10 x^{14} + 39 x^{13} + 88 x^{12} - 106 x^{11} + 286 x^{10} + 609 x^{9} - 207 x^{8} - 643 x^{7} - 290 x^{6} - 726 x^{5} - 1281 x^{4} - 1041 x^{3} - 565 x^{2} - 176 x - 31 \)
Invariants
| Degree: | $20$ | magma: Degree(K);
sage: K.degree()
gp: poldegree(K.pol)
| |
| Signature: | $[4, 8]$ | magma: Signature(K);
sage: K.signature()
gp: K.sign
| |
| Discriminant: | \(7657248876721128710150208161=13^{4}\cdot 401^{9}\) | magma: Discriminant(Integers(K));
sage: K.disc()
gp: K.disc
| |
| Root discriminant: | $24.79$ | magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
sage: (K.disc().abs())^(1./K.degree())
gp: abs(K.disc)^(1/poldegree(K.pol))
| |
| Ramified primes: | $13, 401$ | magma: PrimeDivisors(Discriminant(Integers(K)));
sage: K.disc().support()
gp: factor(abs(K.disc))[,1]~
| |
| This field is not Galois over $\Q$. | |||
| This is not a CM field. | |||
Integral basis (with respect to field generator \(a\))
$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $a^{6}$, $a^{7}$, $a^{8}$, $a^{9}$, $a^{10}$, $a^{11}$, $a^{12}$, $a^{13}$, $\frac{1}{13} a^{14} + \frac{4}{13} a^{13} - \frac{1}{13} a^{12} + \frac{3}{13} a^{10} - \frac{2}{13} a^{9} + \frac{1}{13} a^{8} + \frac{5}{13} a^{7} + \frac{2}{13} a^{6} - \frac{3}{13} a^{5} - \frac{2}{13} a^{4} - \frac{1}{13} a^{3} - \frac{2}{13} a^{2} + \frac{5}{13} a + \frac{6}{13}$, $\frac{1}{13} a^{15} - \frac{4}{13} a^{13} + \frac{4}{13} a^{12} + \frac{3}{13} a^{11} - \frac{1}{13} a^{10} - \frac{4}{13} a^{9} + \frac{1}{13} a^{8} - \frac{5}{13} a^{7} + \frac{2}{13} a^{6} - \frac{3}{13} a^{5} - \frac{6}{13} a^{4} + \frac{2}{13} a^{3} - \frac{1}{13} a + \frac{2}{13}$, $\frac{1}{13} a^{16} - \frac{6}{13} a^{13} - \frac{1}{13} a^{12} - \frac{1}{13} a^{11} - \frac{5}{13} a^{10} + \frac{6}{13} a^{9} - \frac{1}{13} a^{8} - \frac{4}{13} a^{7} + \frac{5}{13} a^{6} - \frac{5}{13} a^{5} - \frac{6}{13} a^{4} - \frac{4}{13} a^{3} + \frac{4}{13} a^{2} - \frac{4}{13} a - \frac{2}{13}$, $\frac{1}{13} a^{17} - \frac{3}{13} a^{13} + \frac{6}{13} a^{12} - \frac{5}{13} a^{11} - \frac{2}{13} a^{10} + \frac{2}{13} a^{8} - \frac{4}{13} a^{7} - \frac{6}{13} a^{6} + \frac{2}{13} a^{5} - \frac{3}{13} a^{4} - \frac{2}{13} a^{3} - \frac{3}{13} a^{2} + \frac{2}{13} a - \frac{3}{13}$, $\frac{1}{13} a^{18} + \frac{5}{13} a^{13} + \frac{5}{13} a^{12} - \frac{2}{13} a^{11} - \frac{4}{13} a^{10} - \frac{4}{13} a^{9} - \frac{1}{13} a^{8} - \frac{4}{13} a^{7} - \frac{5}{13} a^{6} + \frac{1}{13} a^{5} + \frac{5}{13} a^{4} - \frac{6}{13} a^{3} - \frac{4}{13} a^{2} - \frac{1}{13} a + \frac{5}{13}$, $\frac{1}{11684283192758837194172717} a^{19} + \frac{7754786962468412835296}{11684283192758837194172717} a^{18} - \frac{331132389476796734851801}{11684283192758837194172717} a^{17} + \frac{50912438803337887357677}{11684283192758837194172717} a^{16} + \frac{41350317899986109915253}{11684283192758837194172717} a^{15} - \frac{102821816712694338219327}{11684283192758837194172717} a^{14} - \frac{5730854269499993797976463}{11684283192758837194172717} a^{13} + \frac{4757387502896657780722003}{11684283192758837194172717} a^{12} + \frac{3414218092498245684483770}{11684283192758837194172717} a^{11} - \frac{3294666740454982096943014}{11684283192758837194172717} a^{10} - \frac{1609765766006295496757906}{11684283192758837194172717} a^{9} + \frac{116149546026703481455721}{315791437642130734977641} a^{8} - \frac{11114944011080217045820}{11684283192758837194172717} a^{7} + \frac{4260889118496089585305009}{11684283192758837194172717} a^{6} + \frac{1493382513167955880278119}{11684283192758837194172717} a^{5} + \frac{3456144124384889061473797}{11684283192758837194172717} a^{4} + \frac{4707016158927800675997436}{11684283192758837194172717} a^{3} - \frac{3867506304230999080724622}{11684283192758837194172717} a^{2} + \frac{2630061431789088038493117}{11684283192758837194172717} a + \frac{971591676425880584691155}{11684283192758837194172717}$
Class group and class number
Trivial group, which has order $1$
Unit group
| Rank: | $11$ | magma: UnitRank(K);
sage: UK.rank()
gp: K.fu
| |
| Torsion generator: | \( -1 \) (order $2$) | magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
sage: UK.torsion_generator()
gp: K.tu[2]
| |
| Fundamental units: | Units are too long to display, but can be downloaded with other data for this field from 'Stored data to gp' link to the right | magma: [K!f(g): g in Generators(UK)];
sage: UK.fundamental_units()
gp: K.fu
| |
| Regulator: | \( 1121549.32732 \) | magma: Regulator(K);
sage: K.regulator()
gp: K.reg
|
Galois group
$C_2\times C_2^4:D_5$ (as 20T87):
| A solvable group of order 320 |
| The 20 conjugacy class representatives for $C_2\times C_2^4:D_5$ |
| Character table for $C_2\times C_2^4:D_5$ |
Intermediate fields
| 5.5.160801.1, 10.2.4369826510569.1 |
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Sibling fields
| Degree 10 siblings: | data not computed |
| Degree 20 siblings: | data not computed |
| Degree 32 siblings: | data not computed |
| Degree 40 siblings: | data not computed |
Frobenius cycle types
| $p$ | 2 | 3 | 5 | 7 | 11 | 13 | 17 | 19 | 23 | 29 | 31 | 37 | 41 | 43 | 47 | 53 | 59 |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Cycle type | ${\href{/LocalNumberField/2.10.0.1}{10} }^{2}$ | ${\href{/LocalNumberField/3.4.0.1}{4} }^{5}$ | ${\href{/LocalNumberField/5.10.0.1}{10} }^{2}$ | ${\href{/LocalNumberField/7.10.0.1}{10} }^{2}$ | ${\href{/LocalNumberField/11.10.0.1}{10} }^{2}$ | R | ${\href{/LocalNumberField/17.4.0.1}{4} }^{3}{,}\,{\href{/LocalNumberField/17.2.0.1}{2} }^{4}$ | ${\href{/LocalNumberField/19.2.0.1}{2} }^{9}{,}\,{\href{/LocalNumberField/19.1.0.1}{1} }^{2}$ | ${\href{/LocalNumberField/23.4.0.1}{4} }^{4}{,}\,{\href{/LocalNumberField/23.2.0.1}{2} }{,}\,{\href{/LocalNumberField/23.1.0.1}{1} }^{2}$ | ${\href{/LocalNumberField/29.5.0.1}{5} }^{4}$ | ${\href{/LocalNumberField/31.4.0.1}{4} }^{4}{,}\,{\href{/LocalNumberField/31.2.0.1}{2} }{,}\,{\href{/LocalNumberField/31.1.0.1}{1} }^{2}$ | ${\href{/LocalNumberField/37.2.0.1}{2} }^{9}{,}\,{\href{/LocalNumberField/37.1.0.1}{1} }^{2}$ | ${\href{/LocalNumberField/41.10.0.1}{10} }^{2}$ | ${\href{/LocalNumberField/43.5.0.1}{5} }^{4}$ | ${\href{/LocalNumberField/47.10.0.1}{10} }^{2}$ | ${\href{/LocalNumberField/53.4.0.1}{4} }^{4}{,}\,{\href{/LocalNumberField/53.2.0.1}{2} }{,}\,{\href{/LocalNumberField/53.1.0.1}{1} }^{2}$ | ${\href{/LocalNumberField/59.4.0.1}{4} }^{5}$ |
In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
| $p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
|---|---|---|---|---|---|---|---|
| $13$ | $\Q_{13}$ | $x + 2$ | $1$ | $1$ | $0$ | Trivial | $[\ ]$ |
| $\Q_{13}$ | $x + 2$ | $1$ | $1$ | $0$ | Trivial | $[\ ]$ | |
| 13.2.0.1 | $x^{2} - x + 2$ | $1$ | $2$ | $0$ | $C_2$ | $[\ ]^{2}$ | |
| 13.2.0.1 | $x^{2} - x + 2$ | $1$ | $2$ | $0$ | $C_2$ | $[\ ]^{2}$ | |
| 13.2.0.1 | $x^{2} - x + 2$ | $1$ | $2$ | $0$ | $C_2$ | $[\ ]^{2}$ | |
| 13.2.0.1 | $x^{2} - x + 2$ | $1$ | $2$ | $0$ | $C_2$ | $[\ ]^{2}$ | |
| 13.2.0.1 | $x^{2} - x + 2$ | $1$ | $2$ | $0$ | $C_2$ | $[\ ]^{2}$ | |
| 13.4.2.1 | $x^{4} + 39 x^{2} + 676$ | $2$ | $2$ | $2$ | $C_2^2$ | $[\ ]_{2}^{2}$ | |
| 13.4.2.1 | $x^{4} + 39 x^{2} + 676$ | $2$ | $2$ | $2$ | $C_2^2$ | $[\ ]_{2}^{2}$ | |
| 401 | Data not computed | ||||||