Normalized defining polynomial
\( x^{20} - 85 x^{18} + 3390 x^{16} - 4 x^{15} - 83140 x^{14} - 210 x^{13} + 1383545 x^{12} + 10530 x^{11} - 16314455 x^{10} - 179820 x^{9} + 138293980 x^{8} + 1405990 x^{7} - 833762140 x^{6} - 1767742 x^{5} + 3420606480 x^{4} - 44093080 x^{3} - 8583237940 x^{2} + 204431220 x + 9909563804 \)
Invariants
| Degree: | $20$ | magma: Degree(K);
sage: K.degree()
gp: poldegree(K.pol)
| |
| Signature: | $[4, 8]$ | magma: Signature(K);
sage: K.signature()
gp: K.sign
| |
| Discriminant: | \(751341308190288906250000000000000000=2^{16}\cdot 5^{22}\cdot 37^{10}\) | magma: Discriminant(Integers(K));
sage: K.disc()
gp: K.disc
| |
| Root discriminant: | $62.20$ | magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
sage: (K.disc().abs())^(1./K.degree())
gp: abs(K.disc)^(1/poldegree(K.pol))
| |
| Ramified primes: | $2, 5, 37$ | magma: PrimeDivisors(Discriminant(Integers(K)));
sage: K.disc().support()
gp: factor(abs(K.disc))[,1]~
| |
| This field is not Galois over $\Q$. | |||
| This is not a CM field. | |||
Integral basis (with respect to field generator \(a\))
$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $a^{6}$, $a^{7}$, $a^{8}$, $a^{9}$, $\frac{1}{2} a^{10} - \frac{1}{2} a^{9} - \frac{1}{2} a^{6} - \frac{1}{2} a^{5}$, $\frac{1}{2} a^{11} - \frac{1}{2} a^{9} - \frac{1}{2} a^{7} - \frac{1}{2} a^{5}$, $\frac{1}{2} a^{12} - \frac{1}{2} a^{9} - \frac{1}{2} a^{8} - \frac{1}{2} a^{5}$, $\frac{1}{2} a^{13} - \frac{1}{2} a^{5}$, $\frac{1}{2} a^{14} - \frac{1}{2} a^{6}$, $\frac{1}{2} a^{15} - \frac{1}{2} a^{7}$, $\frac{1}{2} a^{16} - \frac{1}{2} a^{8}$, $\frac{1}{2} a^{17} - \frac{1}{2} a^{9}$, $\frac{1}{14} a^{18} - \frac{3}{14} a^{17} + \frac{1}{14} a^{16} - \frac{3}{14} a^{15} - \frac{3}{14} a^{14} - \frac{1}{7} a^{13} - \frac{1}{7} a^{12} - \frac{1}{14} a^{11} - \frac{1}{7} a^{10} + \frac{1}{14} a^{9} + \frac{1}{14} a^{8} + \frac{3}{7} a^{6} - \frac{3}{7} a^{5} - \frac{2}{7} a^{4} - \frac{3}{7} a^{3} - \frac{3}{7} a^{2} - \frac{3}{7} a$, $\frac{1}{3555194963118173635475830416440258902713453116503048307847442092772502} a^{19} - \frac{62844882517117173760561411441756274362645587203757462982422251307985}{3555194963118173635475830416440258902713453116503048307847442092772502} a^{18} + \frac{5636952143199034846600835767164130631065451040369180707526267410723}{26730789196377245379517521928122247388822955763180814344717609720094} a^{17} - \frac{5459604884712361712960675042308817045562491652661056159443995303246}{93557762187320358828311326748427865860880345171132850206511634020329} a^{16} + \frac{237561560521079318670638067014331673903989312931604598803927471533460}{1777597481559086817737915208220129451356726558251524153923721046386251} a^{15} + \frac{390401788888432181093457302789565369879777841607675644211684256237716}{1777597481559086817737915208220129451356726558251524153923721046386251} a^{14} - \frac{215359016795250546286025983634036988213448977103855374831322717384676}{1777597481559086817737915208220129451356726558251524153923721046386251} a^{13} + \frac{189958385483834018944591510764764770723813378183289023314311651587022}{1777597481559086817737915208220129451356726558251524153923721046386251} a^{12} - \frac{2946787591111275181545926642325307291334385001099571687021471460788}{13365394598188622689758760964061123694411477881590407172358804860047} a^{11} + \frac{102120469990507659580952812504708970983964287900889546448736447412329}{3555194963118173635475830416440258902713453116503048307847442092772502} a^{10} - \frac{745915627261555519379022809605898927593666270800969736050475767100278}{1777597481559086817737915208220129451356726558251524153923721046386251} a^{9} - \frac{648579953925530651659514362864485206952082907212195301586891765194590}{1777597481559086817737915208220129451356726558251524153923721046386251} a^{8} - \frac{419295850307387997592661761729549627250072695490591721850736176070279}{3555194963118173635475830416440258902713453116503048307847442092772502} a^{7} - \frac{411510458838320295910458152337287292340576199813707492603215874717144}{1777597481559086817737915208220129451356726558251524153923721046386251} a^{6} + \frac{1048855666324642203948755792811752133867536528809429445856928215605475}{3555194963118173635475830416440258902713453116503048307847442092772502} a^{5} - \frac{179963789477443889367395482641222486871086445535332508497475886703}{858328093461654668149645199526861154686975643771861011068914073581} a^{4} - \frac{7019541559090396900154557361466611792313540669316528188995011684921}{93557762187320358828311326748427865860880345171132850206511634020329} a^{3} + \frac{783940926583817673919301856106776378423631585279599703993184349295879}{1777597481559086817737915208220129451356726558251524153923721046386251} a^{2} - \frac{7430069184987517385613365724157206527156388613963318334373993933567}{93557762187320358828311326748427865860880345171132850206511634020329} a + \frac{41958924145982978936909759381798801510842706187344999016357502168635}{253942497365583831105416458317161350193818079750217736274817292340893}$
Class group and class number
Not computed
Unit group
| Rank: | $11$ | magma: UnitRank(K);
sage: UK.rank()
gp: K.fu
| |
| Torsion generator: | \( -1 \) (order $2$) | magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
sage: UK.torsion_generator()
gp: K.tu[2]
| |
| Fundamental units: | Not computed | magma: [K!f(g): g in Generators(UK)];
sage: UK.fundamental_units()
gp: K.fu
| |
| Regulator: | Not computed | magma: Regulator(K);
sage: K.regulator()
gp: K.reg
|
Galois group
$C_2\times F_5$ (as 20T13):
| A solvable group of order 40 |
| The 10 conjugacy class representatives for $C_2\times F_5$ |
| Character table for $C_2\times F_5$ |
Intermediate fields
| \(\Q(\sqrt{185}) \), \(\Q(\sqrt{37}) \), \(\Q(\sqrt{5}) \), \(\Q(\sqrt{5}, \sqrt{37})\), 5.1.50000.1, 10.2.173359892500000000.1, 10.2.866799462500000000.1, 10.2.12500000000.1 |
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Sibling fields
| Galois closure: | data not computed |
| Degree 10 siblings: | data not computed |
| Degree 20 sibling: | data not computed |
Frobenius cycle types
| $p$ | 2 | 3 | 5 | 7 | 11 | 13 | 17 | 19 | 23 | 29 | 31 | 37 | 41 | 43 | 47 | 53 | 59 |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Cycle type | R | ${\href{/LocalNumberField/3.4.0.1}{4} }^{4}{,}\,{\href{/LocalNumberField/3.2.0.1}{2} }^{2}$ | R | ${\href{/LocalNumberField/7.4.0.1}{4} }^{4}{,}\,{\href{/LocalNumberField/7.2.0.1}{2} }^{2}$ | ${\href{/LocalNumberField/11.5.0.1}{5} }^{4}$ | ${\href{/LocalNumberField/13.4.0.1}{4} }^{4}{,}\,{\href{/LocalNumberField/13.2.0.1}{2} }^{2}$ | ${\href{/LocalNumberField/17.4.0.1}{4} }^{4}{,}\,{\href{/LocalNumberField/17.2.0.1}{2} }^{2}$ | ${\href{/LocalNumberField/19.2.0.1}{2} }^{10}$ | ${\href{/LocalNumberField/23.4.0.1}{4} }^{4}{,}\,{\href{/LocalNumberField/23.2.0.1}{2} }^{2}$ | ${\href{/LocalNumberField/29.2.0.1}{2} }^{10}$ | ${\href{/LocalNumberField/31.10.0.1}{10} }^{2}$ | R | ${\href{/LocalNumberField/41.5.0.1}{5} }^{4}$ | ${\href{/LocalNumberField/43.4.0.1}{4} }^{4}{,}\,{\href{/LocalNumberField/43.2.0.1}{2} }^{2}$ | ${\href{/LocalNumberField/47.4.0.1}{4} }^{4}{,}\,{\href{/LocalNumberField/47.2.0.1}{2} }^{2}$ | ${\href{/LocalNumberField/53.4.0.1}{4} }^{4}{,}\,{\href{/LocalNumberField/53.2.0.1}{2} }^{2}$ | ${\href{/LocalNumberField/59.2.0.1}{2} }^{10}$ |
In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
| $p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
|---|---|---|---|---|---|---|---|
| $2$ | 2.10.8.1 | $x^{10} - 2 x^{5} + 4$ | $5$ | $2$ | $8$ | $F_5$ | $[\ ]_{5}^{4}$ |
| 2.10.8.1 | $x^{10} - 2 x^{5} + 4$ | $5$ | $2$ | $8$ | $F_5$ | $[\ ]_{5}^{4}$ | |
| 5 | Data not computed | ||||||
| $37$ | 37.4.2.1 | $x^{4} + 333 x^{2} + 34225$ | $2$ | $2$ | $2$ | $C_2^2$ | $[\ ]_{2}^{2}$ |
| 37.8.4.1 | $x^{8} + 5476 x^{4} - 50653 x^{2} + 7496644$ | $2$ | $4$ | $4$ | $C_4\times C_2$ | $[\ ]_{2}^{4}$ | |
| 37.8.4.1 | $x^{8} + 5476 x^{4} - 50653 x^{2} + 7496644$ | $2$ | $4$ | $4$ | $C_4\times C_2$ | $[\ ]_{2}^{4}$ | |