Normalized defining polynomial
\( x^{20} - 4 x^{19} + 31 x^{18} - 95 x^{17} + 380 x^{16} - 917 x^{15} + 2195 x^{14} - 3864 x^{13} + 4845 x^{12} - 4682 x^{11} - 975 x^{10} + 7563 x^{9} - 4626 x^{8} - 84 x^{7} + 1252 x^{6} - 5488 x^{5} + 6505 x^{4} + 1055 x^{3} - 4816 x^{2} + 922 x + 701 \)
Invariants
| Degree: | $20$ | magma: Degree(K);
sage: K.degree()
gp: poldegree(K.pol)
| |
| Signature: | $[4, 8]$ | magma: Signature(K);
sage: K.signature()
gp: K.sign
| |
| Discriminant: | \(750553614330423255547227138649=61^{8}\cdot 397^{6}\) | magma: Discriminant(Integers(K));
sage: K.disc()
gp: K.disc
| |
| Root discriminant: | $31.17$ | magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
sage: (K.disc().abs())^(1./K.degree())
gp: abs(K.disc)^(1/poldegree(K.pol))
| |
| Ramified primes: | $61, 397$ | magma: PrimeDivisors(Discriminant(Integers(K)));
sage: K.disc().support()
gp: factor(abs(K.disc))[,1]~
| |
| This field is not Galois over $\Q$. | |||
| This is not a CM field. | |||
Integral basis (with respect to field generator \(a\))
$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $a^{6}$, $a^{7}$, $a^{8}$, $a^{9}$, $a^{10}$, $a^{11}$, $a^{12}$, $a^{13}$, $a^{14}$, $a^{15}$, $a^{16}$, $a^{17}$, $a^{18}$, $\frac{1}{1394363235981649215868697670083278298345659} a^{19} + \frac{115906348129665609809836128085076333574020}{1394363235981649215868697670083278298345659} a^{18} + \frac{231876780332752196480493651647683129949010}{1394363235981649215868697670083278298345659} a^{17} + \frac{262683494141721213641071250944286214229209}{1394363235981649215868697670083278298345659} a^{16} - \frac{167095397719277954164555375182097481903691}{1394363235981649215868697670083278298345659} a^{15} - \frac{50618652220281741602371527927696425095578}{1394363235981649215868697670083278298345659} a^{14} - \frac{289225794631099338894210364427488776028106}{1394363235981649215868697670083278298345659} a^{13} - \frac{169566780653068691401302032242778959196138}{1394363235981649215868697670083278298345659} a^{12} + \frac{276221309376297527462039447917960008199571}{1394363235981649215868697670083278298345659} a^{11} + \frac{287855030939196093249231822391113448620354}{1394363235981649215868697670083278298345659} a^{10} + \frac{287052179931684488593929287564193571756115}{1394363235981649215868697670083278298345659} a^{9} - \frac{453230032046943336869641929303199621822863}{1394363235981649215868697670083278298345659} a^{8} + \frac{544718448898397512367214093862717978893711}{1394363235981649215868697670083278298345659} a^{7} + \frac{159314535632796975999677366504418976738197}{1394363235981649215868697670083278298345659} a^{6} - \frac{20606468046126110564255752882749181346165}{1394363235981649215868697670083278298345659} a^{5} + \frac{295197238728358004225857453455229404917062}{1394363235981649215868697670083278298345659} a^{4} + \frac{256601602154194204154377687297579904115671}{1394363235981649215868697670083278298345659} a^{3} + \frac{451517206065827321615889358816005716320040}{1394363235981649215868697670083278298345659} a^{2} + \frac{395464185480262564547147271581488841616494}{1394363235981649215868697670083278298345659} a + \frac{139607076055001801623567344228148055490485}{1394363235981649215868697670083278298345659}$
Class group and class number
Trivial group, which has order $1$ (assuming GRH)
Unit group
| Rank: | $11$ | magma: UnitRank(K);
sage: UK.rank()
gp: K.fu
| |
| Torsion generator: | \( -1 \) (order $2$) | magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
sage: UK.torsion_generator()
gp: K.tu[2]
| |
| Fundamental units: | Units are too long to display, but can be downloaded with other data for this field from 'Stored data to gp' link to the right (assuming GRH) | magma: [K!f(g): g in Generators(UK)];
sage: UK.fundamental_units()
gp: K.fu
| |
| Regulator: | \( 9006142.83825 \) (assuming GRH) | magma: Regulator(K);
sage: K.regulator()
gp: K.reg
|
Galois group
| A non-solvable group of order 61440 |
| The 126 conjugacy class representatives for t20n664 are not computed |
| Character table for t20n664 is not computed |
Intermediate fields
| 5.5.24217.1, 10.10.866344974205093.1, 10.2.35774248429.1, 10.2.14202376626313.1 |
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Sibling fields
Frobenius cycle types
| $p$ | 2 | 3 | 5 | 7 | 11 | 13 | 17 | 19 | 23 | 29 | 31 | 37 | 41 | 43 | 47 | 53 | 59 |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Cycle type | ${\href{/LocalNumberField/2.10.0.1}{10} }^{2}$ | ${\href{/LocalNumberField/3.5.0.1}{5} }^{4}$ | ${\href{/LocalNumberField/5.4.0.1}{4} }^{4}{,}\,{\href{/LocalNumberField/5.2.0.1}{2} }^{2}$ | ${\href{/LocalNumberField/7.10.0.1}{10} }^{2}$ | ${\href{/LocalNumberField/11.6.0.1}{6} }^{2}{,}\,{\href{/LocalNumberField/11.4.0.1}{4} }^{2}$ | ${\href{/LocalNumberField/13.6.0.1}{6} }^{2}{,}\,{\href{/LocalNumberField/13.4.0.1}{4} }^{2}$ | ${\href{/LocalNumberField/17.6.0.1}{6} }^{2}{,}\,{\href{/LocalNumberField/17.2.0.1}{2} }^{4}$ | ${\href{/LocalNumberField/19.5.0.1}{5} }^{4}$ | ${\href{/LocalNumberField/23.8.0.1}{8} }^{2}{,}\,{\href{/LocalNumberField/23.2.0.1}{2} }^{2}$ | ${\href{/LocalNumberField/29.8.0.1}{8} }^{2}{,}\,{\href{/LocalNumberField/29.2.0.1}{2} }^{2}$ | ${\href{/LocalNumberField/31.6.0.1}{6} }^{2}{,}\,{\href{/LocalNumberField/31.2.0.1}{2} }^{4}$ | ${\href{/LocalNumberField/37.8.0.1}{8} }^{2}{,}\,{\href{/LocalNumberField/37.1.0.1}{1} }^{4}$ | ${\href{/LocalNumberField/41.8.0.1}{8} }^{2}{,}\,{\href{/LocalNumberField/41.2.0.1}{2} }^{2}$ | ${\href{/LocalNumberField/43.8.0.1}{8} }^{2}{,}\,{\href{/LocalNumberField/43.1.0.1}{1} }^{4}$ | ${\href{/LocalNumberField/47.4.0.1}{4} }^{2}{,}\,{\href{/LocalNumberField/47.2.0.1}{2} }^{6}$ | ${\href{/LocalNumberField/53.6.0.1}{6} }^{2}{,}\,{\href{/LocalNumberField/53.2.0.1}{2} }^{4}$ | ${\href{/LocalNumberField/59.6.0.1}{6} }^{2}{,}\,{\href{/LocalNumberField/59.2.0.1}{2} }^{2}{,}\,{\href{/LocalNumberField/59.1.0.1}{1} }^{4}$ |
Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
| $p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
|---|---|---|---|---|---|---|---|
| 61 | Data not computed | ||||||
| 397 | Data not computed | ||||||