Normalized defining polynomial
\( x^{20} - 2313 x^{16} + 52870 x^{14} + 912693 x^{12} - 32854184 x^{10} + 134117049 x^{8} + 2092902102 x^{6} - 13104257906 x^{4} - 9952315326 x^{2} + 117865222327 \)
Invariants
| Degree: | $20$ | magma: Degree(K);
sage: K.degree()
gp: poldegree(K.pol)
| |
| Signature: | $[4, 8]$ | magma: Signature(K);
sage: K.signature()
gp: K.sign
| |
| Discriminant: | \(74891594867646330033252195969701773312=2^{40}\cdot 4903^{7}\) | magma: Discriminant(Integers(K));
sage: K.disc()
gp: K.disc
| |
| Root discriminant: | $78.29$ | magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
sage: (K.disc().abs())^(1./K.degree())
gp: abs(K.disc)^(1/poldegree(K.pol))
| |
| Ramified primes: | $2, 4903$ | magma: PrimeDivisors(Discriminant(Integers(K)));
sage: K.disc().support()
gp: factor(abs(K.disc))[,1]~
| |
| This field is not Galois over $\Q$. | |||
| This is not a CM field. | |||
Integral basis (with respect to field generator \(a\))
$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $a^{6}$, $a^{7}$, $a^{8}$, $a^{9}$, $a^{10}$, $a^{11}$, $a^{12}$, $a^{13}$, $a^{14}$, $a^{15}$, $\frac{1}{4903} a^{16} - \frac{2313}{4903} a^{12} - \frac{1063}{4903} a^{10} + \frac{735}{4903} a^{8} + \frac{819}{4903} a^{6} + \frac{387}{4903} a^{4} - \frac{2284}{4903} a^{2}$, $\frac{1}{4903} a^{17} - \frac{2313}{4903} a^{13} - \frac{1063}{4903} a^{11} + \frac{735}{4903} a^{9} + \frac{819}{4903} a^{7} + \frac{387}{4903} a^{5} - \frac{2284}{4903} a^{3}$, $\frac{1}{1263100889028585294888211700865592465722679209490381} a^{18} + \frac{20160664415029686887686585059576146075729639}{257617966352964571668001570643604418870625986027} a^{16} + \frac{164478899242675819624386087749808153768519334493272}{1263100889028585294888211700865592465722679209490381} a^{14} - \frac{524665391633426885117419965293867723654257338700828}{1263100889028585294888211700865592465722679209490381} a^{12} + \frac{582981790352105318866330143853595562679195656202945}{1263100889028585294888211700865592465722679209490381} a^{10} + \frac{457005364680514410346612854172918753545572090063543}{1263100889028585294888211700865592465722679209490381} a^{8} + \frac{560452657893487002011113386521752271024783962707125}{1263100889028585294888211700865592465722679209490381} a^{6} - \frac{397483091340391666157088868221257067414362075055485}{1263100889028585294888211700865592465722679209490381} a^{4} + \frac{56874120548290109705383723379748642253613011023}{257617966352964571668001570643604418870625986027} a^{2} - \frac{25862151416922899687158989143806152173655533}{52542926035685207356312782101489785615057309}$, $\frac{1}{1263100889028585294888211700865592465722679209490381} a^{19} + \frac{20160664415029686887686585059576146075729639}{257617966352964571668001570643604418870625986027} a^{17} + \frac{164478899242675819624386087749808153768519334493272}{1263100889028585294888211700865592465722679209490381} a^{15} - \frac{524665391633426885117419965293867723654257338700828}{1263100889028585294888211700865592465722679209490381} a^{13} + \frac{582981790352105318866330143853595562679195656202945}{1263100889028585294888211700865592465722679209490381} a^{11} + \frac{457005364680514410346612854172918753545572090063543}{1263100889028585294888211700865592465722679209490381} a^{9} + \frac{560452657893487002011113386521752271024783962707125}{1263100889028585294888211700865592465722679209490381} a^{7} - \frac{397483091340391666157088868221257067414362075055485}{1263100889028585294888211700865592465722679209490381} a^{5} + \frac{56874120548290109705383723379748642253613011023}{257617966352964571668001570643604418870625986027} a^{3} - \frac{25862151416922899687158989143806152173655533}{52542926035685207356312782101489785615057309} a$
Class group and class number
Trivial group, which has order $1$ (assuming GRH)
Unit group
| Rank: | $11$ | magma: UnitRank(K);
sage: UK.rank()
gp: K.fu
| |
| Torsion generator: | \( -1 \) (order $2$) | magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
sage: UK.torsion_generator()
gp: K.tu[2]
| |
| Fundamental units: | Units are too long to display, but can be downloaded with other data for this field from 'Stored data to gp' link to the right (assuming GRH) | magma: [K!f(g): g in Generators(UK)];
sage: UK.fundamental_units()
gp: K.fu
| |
| Regulator: | \( 70540783843.1 \) (assuming GRH) | magma: Regulator(K);
sage: K.regulator()
gp: K.reg
|
Galois group
| A non-solvable group of order 122880 |
| The 138 conjugacy class representatives for t20n807 are not computed |
| Character table for t20n807 is not computed |
Intermediate fields
| 5.3.4903.1, 10.6.24616354816.1 |
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Sibling fields
Frobenius cycle types
| $p$ | 2 | 3 | 5 | 7 | 11 | 13 | 17 | 19 | 23 | 29 | 31 | 37 | 41 | 43 | 47 | 53 | 59 |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Cycle type | R | ${\href{/LocalNumberField/3.12.0.1}{12} }{,}\,{\href{/LocalNumberField/3.8.0.1}{8} }$ | ${\href{/LocalNumberField/5.8.0.1}{8} }{,}\,{\href{/LocalNumberField/5.6.0.1}{6} }^{2}$ | ${\href{/LocalNumberField/7.10.0.1}{10} }{,}\,{\href{/LocalNumberField/7.5.0.1}{5} }^{2}$ | ${\href{/LocalNumberField/11.10.0.1}{10} }{,}\,{\href{/LocalNumberField/11.5.0.1}{5} }^{2}$ | $16{,}\,{\href{/LocalNumberField/13.2.0.1}{2} }^{2}$ | $16{,}\,{\href{/LocalNumberField/17.2.0.1}{2} }^{2}$ | ${\href{/LocalNumberField/19.12.0.1}{12} }{,}\,{\href{/LocalNumberField/19.8.0.1}{8} }$ | ${\href{/LocalNumberField/23.8.0.1}{8} }^{2}{,}\,{\href{/LocalNumberField/23.2.0.1}{2} }^{2}$ | ${\href{/LocalNumberField/29.8.0.1}{8} }{,}\,{\href{/LocalNumberField/29.6.0.1}{6} }^{2}$ | $16{,}\,{\href{/LocalNumberField/31.4.0.1}{4} }$ | ${\href{/LocalNumberField/37.8.0.1}{8} }{,}\,{\href{/LocalNumberField/37.2.0.1}{2} }^{4}{,}\,{\href{/LocalNumberField/37.1.0.1}{1} }^{4}$ | ${\href{/LocalNumberField/41.4.0.1}{4} }^{4}{,}\,{\href{/LocalNumberField/41.2.0.1}{2} }{,}\,{\href{/LocalNumberField/41.1.0.1}{1} }^{2}$ | $16{,}\,{\href{/LocalNumberField/43.4.0.1}{4} }$ | ${\href{/LocalNumberField/47.10.0.1}{10} }{,}\,{\href{/LocalNumberField/47.5.0.1}{5} }^{2}$ | ${\href{/LocalNumberField/53.8.0.1}{8} }{,}\,{\href{/LocalNumberField/53.6.0.1}{6} }^{2}$ | ${\href{/LocalNumberField/59.6.0.1}{6} }^{2}{,}\,{\href{/LocalNumberField/59.2.0.1}{2} }^{3}{,}\,{\href{/LocalNumberField/59.1.0.1}{1} }^{2}$ |
In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
| $p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
|---|---|---|---|---|---|---|---|
| 2 | Data not computed | ||||||
| 4903 | Data not computed | ||||||