Normalized defining polynomial
\( x^{20} + 52 x^{18} + 346 x^{16} - 41816 x^{14} - 690725 x^{12} + 8388608 x^{10} + 159203891 x^{8} - 770557196 x^{6} - 15663050255 x^{4} - 19231527200 x^{2} + 117865222327 \)
Invariants
| Degree: | $20$ | magma: Degree(K);
sage: K.degree()
gp: poldegree(K.pol)
| |
| Signature: | $[4, 8]$ | magma: Signature(K);
sage: K.signature()
gp: K.sign
| |
| Discriminant: | \(74891594867646330033252195969701773312=2^{40}\cdot 4903^{7}\) | magma: Discriminant(Integers(K));
sage: K.disc()
gp: K.disc
| |
| Root discriminant: | $78.29$ | magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
sage: (K.disc().abs())^(1./K.degree())
gp: abs(K.disc)^(1/poldegree(K.pol))
| |
| Ramified primes: | $2, 4903$ | magma: PrimeDivisors(Discriminant(Integers(K)));
sage: K.disc().support()
gp: factor(abs(K.disc))[,1]~
| |
| This field is not Galois over $\Q$. | |||
| This is not a CM field. | |||
Integral basis (with respect to field generator \(a\))
$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $a^{6}$, $a^{7}$, $a^{8}$, $a^{9}$, $a^{10}$, $a^{11}$, $a^{12}$, $a^{13}$, $a^{14}$, $a^{15}$, $\frac{1}{4903} a^{16} + \frac{52}{4903} a^{14} + \frac{346}{4903} a^{12} + \frac{2311}{4903} a^{10} + \frac{598}{4903} a^{8} - \frac{425}{4903} a^{6} - \frac{1422}{4903} a^{4} - \frac{1716}{4903} a^{2}$, $\frac{1}{4903} a^{17} + \frac{52}{4903} a^{15} + \frac{346}{4903} a^{13} + \frac{2311}{4903} a^{11} + \frac{598}{4903} a^{9} - \frac{425}{4903} a^{7} - \frac{1422}{4903} a^{5} - \frac{1716}{4903} a^{3}$, $\frac{1}{232901169310598261237313688322920789377695785555871} a^{18} + \frac{19159197264832397579835023173187697354228387348}{232901169310598261237313688322920789377695785555871} a^{16} - \frac{2791019492528852197717205768565166239561491870047}{232901169310598261237313688322920789377695785555871} a^{14} - \frac{43025785069653331026114499577279857075302373878784}{232901169310598261237313688322920789377695785555871} a^{12} + \frac{94935024116106285484468362786852072465762123217589}{232901169310598261237313688322920789377695785555871} a^{10} - \frac{670526161898351892823333772792713543748124527945}{232901169310598261237313688322920789377695785555871} a^{8} - \frac{65338293189725618249655106464048722381363119870850}{232901169310598261237313688322920789377695785555871} a^{6} + \frac{14754624240466601551673630503057067710395141802329}{232901169310598261237313688322920789377695785555871} a^{4} + \frac{6294121503614623464681707611917604221144675176}{47501768164511168924599977222704627651987718857} a^{2} - \frac{4384685714580261068129662774453582931488064}{9688306784521959805139705735815751101771919}$, $\frac{1}{232901169310598261237313688322920789377695785555871} a^{19} + \frac{19159197264832397579835023173187697354228387348}{232901169310598261237313688322920789377695785555871} a^{17} - \frac{2791019492528852197717205768565166239561491870047}{232901169310598261237313688322920789377695785555871} a^{15} - \frac{43025785069653331026114499577279857075302373878784}{232901169310598261237313688322920789377695785555871} a^{13} + \frac{94935024116106285484468362786852072465762123217589}{232901169310598261237313688322920789377695785555871} a^{11} - \frac{670526161898351892823333772792713543748124527945}{232901169310598261237313688322920789377695785555871} a^{9} - \frac{65338293189725618249655106464048722381363119870850}{232901169310598261237313688322920789377695785555871} a^{7} + \frac{14754624240466601551673630503057067710395141802329}{232901169310598261237313688322920789377695785555871} a^{5} + \frac{6294121503614623464681707611917604221144675176}{47501768164511168924599977222704627651987718857} a^{3} - \frac{4384685714580261068129662774453582931488064}{9688306784521959805139705735815751101771919} a$
Class group and class number
Trivial group, which has order $1$ (assuming GRH)
Unit group
| Rank: | $11$ | magma: UnitRank(K);
sage: UK.rank()
gp: K.fu
| |
| Torsion generator: | \( -1 \) (order $2$) | magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
sage: UK.torsion_generator()
gp: K.tu[2]
| |
| Fundamental units: | Units are too long to display, but can be downloaded with other data for this field from 'Stored data to gp' link to the right (assuming GRH) | magma: [K!f(g): g in Generators(UK)];
sage: UK.fundamental_units()
gp: K.fu
| |
| Regulator: | \( 68274462523.5 \) (assuming GRH) | magma: Regulator(K);
sage: K.regulator()
gp: K.reg
|
Galois group
| A non-solvable group of order 61440 |
| The 69 conjugacy class representatives for t20n691 are not computed |
| Character table for t20n691 is not computed |
Intermediate fields
| 5.3.4903.1, 10.6.24616354816.1 |
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Sibling fields
Frobenius cycle types
| $p$ | 2 | 3 | 5 | 7 | 11 | 13 | 17 | 19 | 23 | 29 | 31 | 37 | 41 | 43 | 47 | 53 | 59 |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Cycle type | R | ${\href{/LocalNumberField/3.12.0.1}{12} }{,}\,{\href{/LocalNumberField/3.8.0.1}{8} }$ | ${\href{/LocalNumberField/5.8.0.1}{8} }{,}\,{\href{/LocalNumberField/5.6.0.1}{6} }^{2}$ | ${\href{/LocalNumberField/7.10.0.1}{10} }{,}\,{\href{/LocalNumberField/7.5.0.1}{5} }^{2}$ | ${\href{/LocalNumberField/11.10.0.1}{10} }{,}\,{\href{/LocalNumberField/11.5.0.1}{5} }^{2}$ | $16{,}\,{\href{/LocalNumberField/13.2.0.1}{2} }^{2}$ | $16{,}\,{\href{/LocalNumberField/17.2.0.1}{2} }^{2}$ | ${\href{/LocalNumberField/19.12.0.1}{12} }{,}\,{\href{/LocalNumberField/19.8.0.1}{8} }$ | ${\href{/LocalNumberField/23.8.0.1}{8} }^{2}{,}\,{\href{/LocalNumberField/23.2.0.1}{2} }^{2}$ | ${\href{/LocalNumberField/29.8.0.1}{8} }{,}\,{\href{/LocalNumberField/29.6.0.1}{6} }^{2}$ | $16{,}\,{\href{/LocalNumberField/31.4.0.1}{4} }$ | ${\href{/LocalNumberField/37.8.0.1}{8} }{,}\,{\href{/LocalNumberField/37.2.0.1}{2} }^{4}{,}\,{\href{/LocalNumberField/37.1.0.1}{1} }^{4}$ | ${\href{/LocalNumberField/41.4.0.1}{4} }^{4}{,}\,{\href{/LocalNumberField/41.2.0.1}{2} }{,}\,{\href{/LocalNumberField/41.1.0.1}{1} }^{2}$ | $16{,}\,{\href{/LocalNumberField/43.4.0.1}{4} }$ | ${\href{/LocalNumberField/47.10.0.1}{10} }{,}\,{\href{/LocalNumberField/47.5.0.1}{5} }^{2}$ | ${\href{/LocalNumberField/53.8.0.1}{8} }{,}\,{\href{/LocalNumberField/53.6.0.1}{6} }^{2}$ | ${\href{/LocalNumberField/59.6.0.1}{6} }^{2}{,}\,{\href{/LocalNumberField/59.2.0.1}{2} }^{3}{,}\,{\href{/LocalNumberField/59.1.0.1}{1} }^{2}$ |
In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
| $p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
|---|---|---|---|---|---|---|---|
| 2 | Data not computed | ||||||
| 4903 | Data not computed | ||||||