Normalized defining polynomial
\( x^{20} + 3 x^{18} - 30 x^{16} + 5 x^{14} + 163 x^{12} - 641 x^{10} + 2959 x^{8} - 3837 x^{6} - 1922 x^{4} + 1475 x^{2} + 27 \)
Invariants
| Degree: | $20$ | magma: Degree(K);
sage: K.degree()
gp: poldegree(K.pol)
| |
| Signature: | $[4, 8]$ | magma: Signature(K);
sage: K.signature()
gp: K.sign
| |
| Discriminant: | \(7448638161908218877936974236672=2^{10}\cdot 3^{9}\cdot 883^{8}\) | magma: Discriminant(Integers(K));
sage: K.disc()
gp: K.disc
| |
| Root discriminant: | $34.96$ | magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
sage: (K.disc().abs())^(1./K.degree())
gp: abs(K.disc)^(1/poldegree(K.pol))
| |
| Ramified primes: | $2, 3, 883$ | magma: PrimeDivisors(Discriminant(Integers(K)));
sage: K.disc().support()
gp: factor(abs(K.disc))[,1]~
| |
| This field is not Galois over $\Q$. | |||
| This is not a CM field. | |||
Integral basis (with respect to field generator \(a\))
$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $a^{6}$, $a^{7}$, $a^{8}$, $a^{9}$, $a^{10}$, $a^{11}$, $a^{12}$, $a^{13}$, $a^{14}$, $\frac{1}{2} a^{15} - \frac{1}{2} a^{14} - \frac{1}{2} a^{13} - \frac{1}{2} a^{12} - \frac{1}{2} a^{11} - \frac{1}{2} a^{6} - \frac{1}{2} a^{4} - \frac{1}{2} a^{3} - \frac{1}{2}$, $\frac{1}{10} a^{16} - \frac{1}{5} a^{14} + \frac{1}{5} a^{12} - \frac{1}{2} a^{11} - \frac{2}{5} a^{10} + \frac{1}{5} a^{8} - \frac{1}{2} a^{7} + \frac{1}{10} a^{6} - \frac{1}{2} a^{5} - \frac{1}{5} a^{4} - \frac{1}{2} a^{3} - \frac{1}{2} a - \frac{1}{10}$, $\frac{1}{10} a^{17} - \frac{1}{5} a^{15} + \frac{1}{5} a^{13} - \frac{1}{2} a^{12} - \frac{2}{5} a^{11} + \frac{1}{5} a^{9} - \frac{1}{2} a^{8} + \frac{1}{10} a^{7} - \frac{1}{2} a^{6} - \frac{1}{5} a^{5} - \frac{1}{2} a^{4} - \frac{1}{2} a^{2} - \frac{1}{10} a$, $\frac{1}{76229509351632290} a^{18} - \frac{671516935214953}{76229509351632290} a^{16} + \frac{13175890937979412}{38114754675816145} a^{14} - \frac{1}{2} a^{13} - \frac{10518789725342013}{38114754675816145} a^{12} - \frac{1}{2} a^{11} - \frac{11021768010118537}{38114754675816145} a^{10} - \frac{1}{2} a^{9} + \frac{8943315777058489}{76229509351632290} a^{8} + \frac{168683506520387}{76229509351632290} a^{6} - \frac{9030571872052889}{38114754675816145} a^{4} + \frac{10330041849976379}{76229509351632290} a^{2} - \frac{1}{2} a - \frac{940508451581549}{76229509351632290}$, $\frac{1}{228688528054896870} a^{19} - \frac{1382411311729697}{38114754675816145} a^{17} + \frac{6932947291047547}{38114754675816145} a^{15} - \frac{1}{2} a^{14} - \frac{18141740660505242}{114344264027448435} a^{13} - \frac{33890620815608224}{114344264027448435} a^{11} - \frac{1}{2} a^{10} - \frac{82532095444900259}{228688528054896870} a^{9} - \frac{1}{2} a^{8} - \frac{41841888390137566}{114344264027448435} a^{7} - \frac{1}{2} a^{6} - \frac{93841395792644}{7622950935163229} a^{5} - \frac{1}{2} a^{4} + \frac{86559551201608669}{228688528054896870} a^{3} + \frac{8291195183521397}{22868852805489687} a$
Class group and class number
$C_{2}$, which has order $2$ (assuming GRH)
Unit group
| Rank: | $11$ | magma: UnitRank(K);
sage: UK.rank()
gp: K.fu
| |
| Torsion generator: | \( -1 \) (order $2$) | magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
sage: UK.torsion_generator()
gp: K.tu[2]
| |
| Fundamental units: | Units are too long to display, but can be downloaded with other data for this field from 'Stored data to gp' link to the right (assuming GRH) | magma: [K!f(g): g in Generators(UK)];
sage: UK.fundamental_units()
gp: K.fu
| |
| Regulator: | \( 35227918.3294 \) (assuming GRH) | magma: Regulator(K);
sage: K.regulator()
gp: K.reg
|
Galois group
| A non-solvable group of order 983040 |
| The 188 conjugacy class representatives for t20n968 are not computed |
| Character table for t20n968 is not computed |
Intermediate fields
| 5.5.7017201.1, 10.6.49241109874401.2 |
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Sibling fields
Frobenius cycle types
| $p$ | 2 | 3 | 5 | 7 | 11 | 13 | 17 | 19 | 23 | 29 | 31 | 37 | 41 | 43 | 47 | 53 | 59 |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Cycle type | R | R | ${\href{/LocalNumberField/5.4.0.1}{4} }^{5}$ | ${\href{/LocalNumberField/7.12.0.1}{12} }{,}\,{\href{/LocalNumberField/7.2.0.1}{2} }^{4}$ | ${\href{/LocalNumberField/11.10.0.1}{10} }^{2}$ | ${\href{/LocalNumberField/13.10.0.1}{10} }^{2}$ | ${\href{/LocalNumberField/17.10.0.1}{10} }{,}\,{\href{/LocalNumberField/17.5.0.1}{5} }^{2}$ | ${\href{/LocalNumberField/19.10.0.1}{10} }{,}\,{\href{/LocalNumberField/19.5.0.1}{5} }^{2}$ | ${\href{/LocalNumberField/23.8.0.1}{8} }{,}\,{\href{/LocalNumberField/23.4.0.1}{4} }{,}\,{\href{/LocalNumberField/23.2.0.1}{2} }^{4}$ | ${\href{/LocalNumberField/29.10.0.1}{10} }{,}\,{\href{/LocalNumberField/29.5.0.1}{5} }^{2}$ | ${\href{/LocalNumberField/31.12.0.1}{12} }{,}\,{\href{/LocalNumberField/31.2.0.1}{2} }^{4}$ | ${\href{/LocalNumberField/37.10.0.1}{10} }^{2}$ | ${\href{/LocalNumberField/41.10.0.1}{10} }{,}\,{\href{/LocalNumberField/41.5.0.1}{5} }^{2}$ | ${\href{/LocalNumberField/43.12.0.1}{12} }{,}\,{\href{/LocalNumberField/43.2.0.1}{2} }^{4}$ | ${\href{/LocalNumberField/47.5.0.1}{5} }^{4}$ | ${\href{/LocalNumberField/53.10.0.1}{10} }{,}\,{\href{/LocalNumberField/53.5.0.1}{5} }^{2}$ | ${\href{/LocalNumberField/59.6.0.1}{6} }{,}\,{\href{/LocalNumberField/59.4.0.1}{4} }{,}\,{\href{/LocalNumberField/59.3.0.1}{3} }^{2}{,}\,{\href{/LocalNumberField/59.2.0.1}{2} }^{2}$ |
In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
| $p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
|---|---|---|---|---|---|---|---|
| $2$ | 2.10.10.8 | $x^{10} + x^{8} - 2 x^{6} - 2 x^{4} + x^{2} + 33$ | $2$ | $5$ | $10$ | $C_2 \times (C_2^4 : C_5)$ | $[2, 2, 2, 2, 2]^{5}$ |
| 2.10.0.1 | $x^{10} - x^{3} + 1$ | $1$ | $10$ | $0$ | $C_{10}$ | $[\ ]^{10}$ | |
| 3 | Data not computed | ||||||
| 883 | Data not computed | ||||||