Normalized defining polynomial
\( x^{20} - 8 x^{19} + 29 x^{18} - 55 x^{17} + 80 x^{16} - 26 x^{15} - 121 x^{14} + 500 x^{13} - 1058 x^{12} + 1728 x^{11} - 1947 x^{10} + 1311 x^{9} + 238 x^{8} - 1124 x^{7} - 286 x^{6} - 40 x^{5} + 3317 x^{4} - 3665 x^{3} + 1100 x^{2} + 80 x - 29 \)
Invariants
| Degree: | $20$ | magma: Degree(K);
sage: K.degree()
gp: poldegree(K.pol)
| |
| Signature: | $[4, 8]$ | magma: Signature(K);
sage: K.signature()
gp: K.sign
| |
| Discriminant: | \(72694810795678541153171964441=3^{26}\cdot 7^{6}\cdot 79^{6}\) | magma: Discriminant(Integers(K));
sage: K.disc()
gp: K.disc
| |
| Root discriminant: | $27.74$ | magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
sage: (K.disc().abs())^(1./K.degree())
gp: abs(K.disc)^(1/poldegree(K.pol))
| |
| Ramified primes: | $3, 7, 79$ | magma: PrimeDivisors(Discriminant(Integers(K)));
sage: K.disc().support()
gp: factor(abs(K.disc))[,1]~
| |
| This field is not Galois over $\Q$. | |||
| This is not a CM field. | |||
Integral basis (with respect to field generator \(a\))
$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $a^{6}$, $a^{7}$, $a^{8}$, $a^{9}$, $a^{10}$, $a^{11}$, $a^{12}$, $a^{13}$, $\frac{1}{3} a^{14} + \frac{1}{3} a^{13} - \frac{1}{3} a^{12} + \frac{1}{3} a^{2} + \frac{1}{3} a - \frac{1}{3}$, $\frac{1}{3} a^{15} + \frac{1}{3} a^{13} + \frac{1}{3} a^{12} + \frac{1}{3} a^{3} + \frac{1}{3} a + \frac{1}{3}$, $\frac{1}{3} a^{16} + \frac{1}{3} a^{12} + \frac{1}{3} a^{4} + \frac{1}{3}$, $\frac{1}{3} a^{17} + \frac{1}{3} a^{13} + \frac{1}{3} a^{5} + \frac{1}{3} a$, $\frac{1}{9} a^{18} - \frac{1}{9} a^{17} - \frac{1}{9} a^{16} + \frac{1}{9} a^{14} - \frac{1}{9} a^{13} + \frac{2}{9} a^{12} - \frac{1}{3} a^{8} + \frac{1}{3} a^{7} + \frac{4}{9} a^{6} - \frac{4}{9} a^{5} - \frac{1}{9} a^{4} + \frac{1}{3} a^{3} + \frac{1}{9} a^{2} - \frac{1}{9} a - \frac{1}{9}$, $\frac{1}{3173418878403931634994374104307415} a^{19} - \frac{104206828246621188879295691343907}{3173418878403931634994374104307415} a^{18} - \frac{274870587563873376632701469285968}{3173418878403931634994374104307415} a^{17} + \frac{4493920972196070801700899384814}{1057806292801310544998124701435805} a^{16} - \frac{294901693040027834814378679835003}{3173418878403931634994374104307415} a^{15} - \frac{389901340240671083269429971107119}{3173418878403931634994374104307415} a^{14} - \frac{47229065156826003374272296930854}{634683775680786326998874820861483} a^{13} - \frac{73959214670053604152340387108630}{211561258560262108999624940287161} a^{12} - \frac{28808242560497575627058382008007}{352602097600436848332708233811935} a^{11} - \frac{10364633886469976366559806353068}{70520419520087369666541646762387} a^{10} + \frac{153009408784458903401677261419371}{1057806292801310544998124701435805} a^{9} - \frac{358708667970891788917121044715477}{1057806292801310544998124701435805} a^{8} - \frac{619673540571965899854497148534293}{3173418878403931634994374104307415} a^{7} - \frac{811184276195416184185802555491987}{3173418878403931634994374104307415} a^{6} + \frac{1361025063250764122650186177439417}{3173418878403931634994374104307415} a^{5} - \frac{512940378939357604642695632307841}{1057806292801310544998124701435805} a^{4} - \frac{801585827625657765251901885470351}{3173418878403931634994374104307415} a^{3} + \frac{229145519399027846206609129085459}{3173418878403931634994374104307415} a^{2} - \frac{500517402346418518731767654226226}{3173418878403931634994374104307415} a + \frac{104098009919477147072682386243558}{1057806292801310544998124701435805}$
Class group and class number
Trivial group, which has order $1$ (assuming GRH)
Unit group
| Rank: | $11$ | magma: UnitRank(K);
sage: UK.rank()
gp: K.fu
| |
| Torsion generator: | \( -1 \) (order $2$) | magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
sage: UK.torsion_generator()
gp: K.tu[2]
| |
| Fundamental units: | Units are too long to display, but can be downloaded with other data for this field from 'Stored data to gp' link to the right (assuming GRH) | magma: [K!f(g): g in Generators(UK)];
sage: UK.fundamental_units()
gp: K.fu
| |
| Regulator: | \( 4117686.54927 \) (assuming GRH) | magma: Regulator(K);
sage: K.regulator()
gp: K.reg
|
Galois group
| A non-solvable group of order 61440 |
| The 126 conjugacy class representatives for t20n664 are not computed |
| Character table for t20n664 is not computed |
Intermediate fields
| 5.5.403137.1, 10.2.89873250745257.1, 10.8.269619752235771.1, 10.4.487558322307.1 |
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Sibling fields
Frobenius cycle types
| $p$ | 2 | 3 | 5 | 7 | 11 | 13 | 17 | 19 | 23 | 29 | 31 | 37 | 41 | 43 | 47 | 53 | 59 |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Cycle type | ${\href{/LocalNumberField/2.10.0.1}{10} }^{2}$ | R | ${\href{/LocalNumberField/5.8.0.1}{8} }^{2}{,}\,{\href{/LocalNumberField/5.2.0.1}{2} }^{2}$ | R | ${\href{/LocalNumberField/11.10.0.1}{10} }^{2}$ | ${\href{/LocalNumberField/13.6.0.1}{6} }^{2}{,}\,{\href{/LocalNumberField/13.4.0.1}{4} }^{2}$ | ${\href{/LocalNumberField/17.10.0.1}{10} }^{2}$ | ${\href{/LocalNumberField/19.4.0.1}{4} }^{2}{,}\,{\href{/LocalNumberField/19.3.0.1}{3} }^{4}$ | ${\href{/LocalNumberField/23.10.0.1}{10} }^{2}$ | ${\href{/LocalNumberField/29.8.0.1}{8} }^{2}{,}\,{\href{/LocalNumberField/29.1.0.1}{1} }^{4}$ | ${\href{/LocalNumberField/31.8.0.1}{8} }^{2}{,}\,{\href{/LocalNumberField/31.1.0.1}{1} }^{4}$ | ${\href{/LocalNumberField/37.8.0.1}{8} }^{2}{,}\,{\href{/LocalNumberField/37.2.0.1}{2} }^{2}$ | ${\href{/LocalNumberField/41.4.0.1}{4} }^{4}{,}\,{\href{/LocalNumberField/41.2.0.1}{2} }^{2}$ | ${\href{/LocalNumberField/43.8.0.1}{8} }^{2}{,}\,{\href{/LocalNumberField/43.1.0.1}{1} }^{4}$ | ${\href{/LocalNumberField/47.10.0.1}{10} }^{2}$ | ${\href{/LocalNumberField/53.4.0.1}{4} }^{4}{,}\,{\href{/LocalNumberField/53.2.0.1}{2} }^{2}$ | ${\href{/LocalNumberField/59.4.0.1}{4} }^{2}{,}\,{\href{/LocalNumberField/59.2.0.1}{2} }^{6}$ |
In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
| $p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
|---|---|---|---|---|---|---|---|
| $3$ | 3.6.10.1 | $x^{6} - 18$ | $3$ | $2$ | $10$ | $D_{6}$ | $[5/2]_{2}^{2}$ |
| 3.6.10.1 | $x^{6} - 18$ | $3$ | $2$ | $10$ | $D_{6}$ | $[5/2]_{2}^{2}$ | |
| 3.8.6.2 | $x^{8} + 4 x^{7} + 14 x^{6} + 28 x^{5} + 43 x^{4} + 44 x^{3} + 110 x^{2} + 92 x + 22$ | $4$ | $2$ | $6$ | $D_4$ | $[\ ]_{4}^{2}$ | |
| $7$ | 7.6.0.1 | $x^{6} + 3 x^{2} - x + 5$ | $1$ | $6$ | $0$ | $C_6$ | $[\ ]^{6}$ |
| 7.6.0.1 | $x^{6} + 3 x^{2} - x + 5$ | $1$ | $6$ | $0$ | $C_6$ | $[\ ]^{6}$ | |
| 7.8.6.2 | $x^{8} - 49 x^{4} + 3969$ | $4$ | $2$ | $6$ | $D_4$ | $[\ ]_{4}^{2}$ | |
| $79$ | 79.2.0.1 | $x^{2} - x + 3$ | $1$ | $2$ | $0$ | $C_2$ | $[\ ]^{2}$ |
| 79.2.0.1 | $x^{2} - x + 3$ | $1$ | $2$ | $0$ | $C_2$ | $[\ ]^{2}$ | |
| 79.4.0.1 | $x^{4} - x + 3$ | $1$ | $4$ | $0$ | $C_4$ | $[\ ]^{4}$ | |
| 79.4.0.1 | $x^{4} - x + 3$ | $1$ | $4$ | $0$ | $C_4$ | $[\ ]^{4}$ | |
| 79.8.6.1 | $x^{8} - 553 x^{4} + 505521$ | $4$ | $2$ | $6$ | $D_4$ | $[\ ]_{4}^{2}$ |