Normalized defining polynomial
\( x^{20} - 2 x^{19} - 4 x^{18} + 18 x^{17} - 9 x^{16} - 24 x^{15} - x^{14} + 62 x^{13} + x^{12} - 160 x^{11} + 128 x^{10} - 56 x^{9} - 94 x^{8} + 287 x^{7} - 44 x^{6} - 747 x^{5} + 711 x^{4} + 45 x^{3} - 81 x^{2} - 81 x + 81 \)
Invariants
| Degree: | $20$ | magma: Degree(K);
sage: K.degree()
gp: poldegree(K.pol)
| |
| Signature: | $[4, 8]$ | magma: Signature(K);
sage: K.signature()
gp: K.sign
| |
| Discriminant: | \(72694810795678541153171964441=3^{26}\cdot 7^{6}\cdot 79^{6}\) | magma: Discriminant(Integers(K));
sage: K.disc()
gp: K.disc
| |
| Root discriminant: | $27.74$ | magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
sage: (K.disc().abs())^(1./K.degree())
gp: abs(K.disc)^(1/poldegree(K.pol))
| |
| Ramified primes: | $3, 7, 79$ | magma: PrimeDivisors(Discriminant(Integers(K)));
sage: K.disc().support()
gp: factor(abs(K.disc))[,1]~
| |
| This field is not Galois over $\Q$. | |||
| This is not a CM field. | |||
Integral basis (with respect to field generator \(a\))
$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $a^{6}$, $a^{7}$, $a^{8}$, $a^{9}$, $a^{10}$, $a^{11}$, $\frac{1}{3} a^{12} - \frac{1}{3} a^{11} - \frac{1}{3} a^{10} - \frac{1}{3} a^{8} + \frac{1}{3} a^{7} + \frac{1}{3} a^{5} - \frac{1}{3} a^{4} + \frac{1}{3} a^{3} + \frac{1}{3} a^{2}$, $\frac{1}{3} a^{13} + \frac{1}{3} a^{11} - \frac{1}{3} a^{10} - \frac{1}{3} a^{9} + \frac{1}{3} a^{7} + \frac{1}{3} a^{6} - \frac{1}{3} a^{3} + \frac{1}{3} a^{2}$, $\frac{1}{3} a^{14} - \frac{1}{3} a^{8} - \frac{1}{3} a^{5} - \frac{1}{3} a^{2}$, $\frac{1}{3} a^{15} - \frac{1}{3} a^{9} - \frac{1}{3} a^{6} - \frac{1}{3} a^{3}$, $\frac{1}{3} a^{16} - \frac{1}{3} a^{10} - \frac{1}{3} a^{7} - \frac{1}{3} a^{4}$, $\frac{1}{9} a^{17} + \frac{1}{9} a^{16} - \frac{1}{9} a^{15} + \frac{2}{9} a^{11} - \frac{1}{9} a^{10} - \frac{2}{9} a^{9} - \frac{4}{9} a^{8} - \frac{4}{9} a^{7} + \frac{4}{9} a^{6} + \frac{2}{9} a^{5} - \frac{1}{9} a^{4} + \frac{4}{9} a^{3} - \frac{1}{3} a^{2}$, $\frac{1}{189} a^{18} + \frac{1}{189} a^{17} - \frac{19}{189} a^{16} + \frac{2}{63} a^{15} - \frac{1}{7} a^{14} - \frac{8}{63} a^{13} - \frac{4}{27} a^{12} + \frac{32}{189} a^{11} - \frac{29}{189} a^{10} - \frac{67}{189} a^{9} - \frac{55}{189} a^{8} + \frac{40}{189} a^{7} - \frac{55}{189} a^{6} - \frac{94}{189} a^{5} - \frac{92}{189} a^{4} + \frac{13}{63} a^{3} + \frac{10}{21} a^{2} - \frac{8}{21} a - \frac{1}{7}$, $\frac{1}{62371582975374199244109} a^{19} - \frac{214131847267503953}{20790527658458066414703} a^{18} + \frac{22776087507991535308}{62371582975374199244109} a^{17} + \frac{2506138787933842650856}{62371582975374199244109} a^{16} - \frac{7156315963001464391}{990025126593241257843} a^{15} - \frac{446754058774068209783}{20790527658458066414703} a^{14} - \frac{2408711327471108910946}{62371582975374199244109} a^{13} + \frac{2349456989645672099290}{20790527658458066414703} a^{12} + \frac{25500457031805618817433}{62371582975374199244109} a^{11} + \frac{23658056480047388006869}{62371582975374199244109} a^{10} + \frac{3604504651638022988008}{20790527658458066414703} a^{9} + \frac{7597959676615416635162}{62371582975374199244109} a^{8} - \frac{3723122146533116697392}{62371582975374199244109} a^{7} - \frac{9561736014684239304082}{20790527658458066414703} a^{6} + \frac{12002488132162387422650}{62371582975374199244109} a^{5} - \frac{25247759753088739914394}{62371582975374199244109} a^{4} - \frac{2727723069361807610620}{6930175886152688804901} a^{3} + \frac{375302795750887929136}{6930175886152688804901} a^{2} - \frac{1245108537941266738891}{6930175886152688804901} a + \frac{129659638159455733727}{2310058628717562934967}$
Class group and class number
Trivial group, which has order $1$ (assuming GRH)
Unit group
| Rank: | $11$ | magma: UnitRank(K);
sage: UK.rank()
gp: K.fu
| |
| Torsion generator: | \( -1 \) (order $2$) | magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
sage: UK.torsion_generator()
gp: K.tu[2]
| |
| Fundamental units: | Units are too long to display, but can be downloaded with other data for this field from 'Stored data to gp' link to the right (assuming GRH) | magma: [K!f(g): g in Generators(UK)];
sage: UK.fundamental_units()
gp: K.fu
| |
| Regulator: | \( 9148420.81326 \) (assuming GRH) | magma: Regulator(K);
sage: K.regulator()
gp: K.reg
|
Galois group
| A non-solvable group of order 61440 |
| The 126 conjugacy class representatives for t20n664 are not computed |
| Character table for t20n664 is not computed |
Intermediate fields
| 5.5.403137.1, 10.6.38517107462253.1, 10.6.3412908256149.1, 10.2.89873250745257.1 |
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Sibling fields
Frobenius cycle types
| $p$ | 2 | 3 | 5 | 7 | 11 | 13 | 17 | 19 | 23 | 29 | 31 | 37 | 41 | 43 | 47 | 53 | 59 |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Cycle type | ${\href{/LocalNumberField/2.10.0.1}{10} }^{2}$ | R | ${\href{/LocalNumberField/5.4.0.1}{4} }^{4}{,}\,{\href{/LocalNumberField/5.2.0.1}{2} }^{2}$ | R | ${\href{/LocalNumberField/11.10.0.1}{10} }^{2}$ | ${\href{/LocalNumberField/13.6.0.1}{6} }^{2}{,}\,{\href{/LocalNumberField/13.4.0.1}{4} }^{2}$ | ${\href{/LocalNumberField/17.5.0.1}{5} }^{4}$ | ${\href{/LocalNumberField/19.6.0.1}{6} }^{2}{,}\,{\href{/LocalNumberField/19.4.0.1}{4} }^{2}$ | ${\href{/LocalNumberField/23.10.0.1}{10} }^{2}$ | ${\href{/LocalNumberField/29.8.0.1}{8} }^{2}{,}\,{\href{/LocalNumberField/29.1.0.1}{1} }^{4}$ | ${\href{/LocalNumberField/31.8.0.1}{8} }^{2}{,}\,{\href{/LocalNumberField/31.1.0.1}{1} }^{4}$ | ${\href{/LocalNumberField/37.8.0.1}{8} }^{2}{,}\,{\href{/LocalNumberField/37.2.0.1}{2} }^{2}$ | ${\href{/LocalNumberField/41.4.0.1}{4} }^{4}{,}\,{\href{/LocalNumberField/41.2.0.1}{2} }^{2}$ | ${\href{/LocalNumberField/43.8.0.1}{8} }^{2}{,}\,{\href{/LocalNumberField/43.2.0.1}{2} }^{2}$ | ${\href{/LocalNumberField/47.5.0.1}{5} }^{4}$ | ${\href{/LocalNumberField/53.4.0.1}{4} }^{4}{,}\,{\href{/LocalNumberField/53.2.0.1}{2} }^{2}$ | ${\href{/LocalNumberField/59.4.0.1}{4} }^{2}{,}\,{\href{/LocalNumberField/59.2.0.1}{2} }^{6}$ |
In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
| $p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
|---|---|---|---|---|---|---|---|
| $3$ | 3.4.2.1 | $x^{4} + 9 x^{2} + 36$ | $2$ | $2$ | $2$ | $C_2^2$ | $[\ ]_{2}^{2}$ |
| 3.4.2.1 | $x^{4} + 9 x^{2} + 36$ | $2$ | $2$ | $2$ | $C_2^2$ | $[\ ]_{2}^{2}$ | |
| 3.6.11.2 | $x^{6} + 15$ | $6$ | $1$ | $11$ | $D_{6}$ | $[5/2]_{2}^{2}$ | |
| 3.6.11.2 | $x^{6} + 15$ | $6$ | $1$ | $11$ | $D_{6}$ | $[5/2]_{2}^{2}$ | |
| $7$ | 7.4.3.2 | $x^{4} - 7$ | $4$ | $1$ | $3$ | $D_{4}$ | $[\ ]_{4}^{2}$ |
| 7.4.3.2 | $x^{4} - 7$ | $4$ | $1$ | $3$ | $D_{4}$ | $[\ ]_{4}^{2}$ | |
| 7.6.0.1 | $x^{6} + 3 x^{2} - x + 5$ | $1$ | $6$ | $0$ | $C_6$ | $[\ ]^{6}$ | |
| 7.6.0.1 | $x^{6} + 3 x^{2} - x + 5$ | $1$ | $6$ | $0$ | $C_6$ | $[\ ]^{6}$ | |
| $79$ | $\Q_{79}$ | $x + 2$ | $1$ | $1$ | $0$ | Trivial | $[\ ]$ |
| $\Q_{79}$ | $x + 2$ | $1$ | $1$ | $0$ | Trivial | $[\ ]$ | |
| $\Q_{79}$ | $x + 2$ | $1$ | $1$ | $0$ | Trivial | $[\ ]$ | |
| $\Q_{79}$ | $x + 2$ | $1$ | $1$ | $0$ | Trivial | $[\ ]$ | |
| 79.2.0.1 | $x^{2} - x + 3$ | $1$ | $2$ | $0$ | $C_2$ | $[\ ]^{2}$ | |
| 79.2.0.1 | $x^{2} - x + 3$ | $1$ | $2$ | $0$ | $C_2$ | $[\ ]^{2}$ | |
| 79.2.0.1 | $x^{2} - x + 3$ | $1$ | $2$ | $0$ | $C_2$ | $[\ ]^{2}$ | |
| 79.2.0.1 | $x^{2} - x + 3$ | $1$ | $2$ | $0$ | $C_2$ | $[\ ]^{2}$ | |
| 79.8.6.1 | $x^{8} - 553 x^{4} + 505521$ | $4$ | $2$ | $6$ | $D_4$ | $[\ ]_{4}^{2}$ |