Normalized defining polynomial
\( x^{20} + 78 x^{18} + 1381 x^{16} - 24096 x^{14} - 1118946 x^{12} - 14722988 x^{10} - 85646316 x^{8} - 211359344 x^{6} - 201345459 x^{4} - 58320290 x^{2} + 2941225 \)
Invariants
| Degree: | $20$ | magma: Degree(K);
sage: K.degree()
gp: poldegree(K.pol)
| |
| Signature: | $[4, 8]$ | magma: Signature(K);
sage: K.signature()
gp: K.sign
| |
| Discriminant: | \(72379138322906453694958954086400000000000000=2^{58}\cdot 5^{14}\cdot 7^{6}\cdot 769^{4}\) | magma: Discriminant(Integers(K));
sage: K.disc()
gp: K.disc
| |
| Root discriminant: | $155.95$ | magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
sage: (K.disc().abs())^(1./K.degree())
gp: abs(K.disc)^(1/poldegree(K.pol))
| |
| Ramified primes: | $2, 5, 7, 769$ | magma: PrimeDivisors(Discriminant(Integers(K)));
sage: K.disc().support()
gp: factor(abs(K.disc))[,1]~
| |
| This field is not Galois over $\Q$. | |||
| This is not a CM field. | |||
Integral basis (with respect to field generator \(a\))
$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $a^{6}$, $a^{7}$, $a^{8}$, $a^{9}$, $\frac{1}{7} a^{10} + \frac{1}{7} a^{8} + \frac{2}{7} a^{6} - \frac{2}{7} a^{4} - \frac{3}{7} a^{2}$, $\frac{1}{7} a^{11} + \frac{1}{7} a^{9} + \frac{2}{7} a^{7} - \frac{2}{7} a^{5} - \frac{3}{7} a^{3}$, $\frac{1}{147} a^{12} + \frac{1}{147} a^{10} - \frac{19}{147} a^{8} - \frac{44}{147} a^{6} + \frac{25}{147} a^{4} + \frac{4}{21} a^{2} - \frac{1}{3}$, $\frac{1}{147} a^{13} + \frac{1}{147} a^{11} - \frac{19}{147} a^{9} - \frac{44}{147} a^{7} + \frac{25}{147} a^{5} + \frac{4}{21} a^{3} - \frac{1}{3} a$, $\frac{1}{3087} a^{14} + \frac{8}{3087} a^{12} - \frac{53}{1029} a^{10} + \frac{13}{343} a^{8} - \frac{1312}{3087} a^{6} - \frac{181}{441} a^{4} + \frac{1}{21} a^{2} - \frac{1}{9}$, $\frac{1}{3087} a^{15} + \frac{8}{3087} a^{13} - \frac{53}{1029} a^{11} + \frac{13}{343} a^{9} - \frac{1312}{3087} a^{7} - \frac{181}{441} a^{5} + \frac{1}{21} a^{3} - \frac{1}{9} a$, $\frac{1}{64827} a^{16} - \frac{2}{21609} a^{14} + \frac{170}{64827} a^{12} - \frac{1130}{21609} a^{10} - \frac{20590}{64827} a^{8} - \frac{425}{1323} a^{6} + \frac{149}{1323} a^{4} + \frac{8}{27} a^{2} + \frac{11}{27}$, $\frac{1}{64827} a^{17} - \frac{2}{21609} a^{15} + \frac{170}{64827} a^{13} - \frac{1130}{21609} a^{11} - \frac{20590}{64827} a^{9} - \frac{425}{1323} a^{7} + \frac{149}{1323} a^{5} + \frac{8}{27} a^{3} + \frac{11}{27} a$, $\frac{1}{21507012260511248659074836355} a^{18} + \frac{709472312957634268778}{21507012260511248659074836355} a^{16} - \frac{2659374574200389634541069}{21507012260511248659074836355} a^{14} + \frac{57994260367212439829170414}{21507012260511248659074836355} a^{12} - \frac{954202579972799848961139901}{21507012260511248659074836355} a^{10} + \frac{352862252876898378657253061}{3072430322930178379867833765} a^{8} + \frac{14077140746617533010043923}{62702659651636293466690485} a^{6} + \frac{1002905330961463696880212}{2985840935792204450794785} a^{4} - \frac{848962723440209663346643}{2985840935792204450794785} a^{2} + \frac{78262189554389572386701}{255929223067903238639553}$, $\frac{1}{21507012260511248659074836355} a^{19} + \frac{709472312957634268778}{21507012260511248659074836355} a^{17} - \frac{2659374574200389634541069}{21507012260511248659074836355} a^{15} + \frac{57994260367212439829170414}{21507012260511248659074836355} a^{13} - \frac{954202579972799848961139901}{21507012260511248659074836355} a^{11} + \frac{352862252876898378657253061}{3072430322930178379867833765} a^{9} + \frac{14077140746617533010043923}{62702659651636293466690485} a^{7} + \frac{1002905330961463696880212}{2985840935792204450794785} a^{5} - \frac{848962723440209663346643}{2985840935792204450794785} a^{3} + \frac{78262189554389572386701}{255929223067903238639553} a$
Class group and class number
$C_{2}\times C_{2}$, which has order $4$ (assuming GRH)
Unit group
| Rank: | $11$ | magma: UnitRank(K);
sage: UK.rank()
gp: K.fu
| |
| Torsion generator: | \( -1 \) (order $2$) | magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
sage: UK.torsion_generator()
gp: K.tu[2]
| |
| Fundamental units: | Units are too long to display, but can be downloaded with other data for this field from 'Stored data to gp' link to the right (assuming GRH) | magma: [K!f(g): g in Generators(UK)];
sage: UK.fundamental_units()
gp: K.fu
| |
| Regulator: | \( 71377240237300 \) (assuming GRH) | magma: Regulator(K);
sage: K.regulator()
gp: K.reg
|
Galois group
| A solvable group of order 204800 |
| The 116 conjugacy class representatives for t20n872 are not computed |
| Character table for t20n872 is not computed |
Intermediate fields
| \(\Q(\sqrt{2}) \), 10.10.4844429312000000.1 |
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Sibling fields
Frobenius cycle types
| $p$ | 2 | 3 | 5 | 7 | 11 | 13 | 17 | 19 | 23 | 29 | 31 | 37 | 41 | 43 | 47 | 53 | 59 |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Cycle type | R | ${\href{/LocalNumberField/3.4.0.1}{4} }^{4}{,}\,{\href{/LocalNumberField/3.2.0.1}{2} }^{2}$ | R | R | ${\href{/LocalNumberField/11.8.0.1}{8} }{,}\,{\href{/LocalNumberField/11.4.0.1}{4} }^{3}$ | ${\href{/LocalNumberField/13.10.0.1}{10} }^{2}$ | ${\href{/LocalNumberField/17.4.0.1}{4} }^{4}{,}\,{\href{/LocalNumberField/17.1.0.1}{1} }^{4}$ | ${\href{/LocalNumberField/19.10.0.1}{10} }^{2}$ | ${\href{/LocalNumberField/23.8.0.1}{8} }{,}\,{\href{/LocalNumberField/23.4.0.1}{4} }^{2}{,}\,{\href{/LocalNumberField/23.2.0.1}{2} }{,}\,{\href{/LocalNumberField/23.1.0.1}{1} }^{2}$ | ${\href{/LocalNumberField/29.8.0.1}{8} }{,}\,{\href{/LocalNumberField/29.4.0.1}{4} }^{3}$ | ${\href{/LocalNumberField/31.5.0.1}{5} }^{4}$ | ${\href{/LocalNumberField/37.10.0.1}{10} }^{2}$ | ${\href{/LocalNumberField/41.10.0.1}{10} }^{2}$ | ${\href{/LocalNumberField/43.8.0.1}{8} }{,}\,{\href{/LocalNumberField/43.4.0.1}{4} }^{3}$ | ${\href{/LocalNumberField/47.8.0.1}{8} }{,}\,{\href{/LocalNumberField/47.4.0.1}{4} }^{2}{,}\,{\href{/LocalNumberField/47.2.0.1}{2} }{,}\,{\href{/LocalNumberField/47.1.0.1}{1} }^{2}$ | ${\href{/LocalNumberField/53.10.0.1}{10} }^{2}$ | ${\href{/LocalNumberField/59.8.0.1}{8} }{,}\,{\href{/LocalNumberField/59.4.0.1}{4} }^{3}$ |
In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
| $p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
|---|---|---|---|---|---|---|---|
| 2 | Data not computed | ||||||
| 5 | Data not computed | ||||||
| $7$ | 7.2.1.1 | $x^{2} - 7$ | $2$ | $1$ | $1$ | $C_2$ | $[\ ]_{2}$ |
| 7.2.1.2 | $x^{2} + 14$ | $2$ | $1$ | $1$ | $C_2$ | $[\ ]_{2}$ | |
| 7.4.0.1 | $x^{4} + x^{2} - 3 x + 5$ | $1$ | $4$ | $0$ | $C_4$ | $[\ ]^{4}$ | |
| 7.4.0.1 | $x^{4} + x^{2} - 3 x + 5$ | $1$ | $4$ | $0$ | $C_4$ | $[\ ]^{4}$ | |
| 7.8.4.2 | $x^{8} + 49 x^{4} - 1029 x^{2} + 12005$ | $2$ | $4$ | $4$ | $C_8$ | $[\ ]_{2}^{4}$ | |
| 769 | Data not computed | ||||||