Normalized defining polynomial
\( x^{20} - 4 x^{19} + 6 x^{18} - 8 x^{17} + 8 x^{16} + 3 x^{15} - 29 x^{14} + 40 x^{13} - 3 x^{12} - 31 x^{11} + 35 x^{10} - 31 x^{9} - 3 x^{8} + 40 x^{7} - 29 x^{6} + 3 x^{5} + 8 x^{4} - 8 x^{3} + 6 x^{2} - 4 x + 1 \)
Invariants
| Degree: | $20$ | magma: Degree(K);
sage: K.degree()
gp: poldegree(K.pol)
| |
| Signature: | $[4, 8]$ | magma: Signature(K);
sage: K.signature()
gp: K.sign
| |
| Discriminant: | \(7170151093155466780795369=53^{6}\cdot 4241^{4}\) | magma: Discriminant(Integers(K));
sage: K.disc()
gp: K.disc
| |
| Root discriminant: | $17.49$ | magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
sage: (K.disc().abs())^(1./K.degree())
gp: abs(K.disc)^(1/poldegree(K.pol))
| |
| Ramified primes: | $53, 4241$ | magma: PrimeDivisors(Discriminant(Integers(K)));
sage: K.disc().support()
gp: factor(abs(K.disc))[,1]~
| |
| This field is not Galois over $\Q$. | |||
| This is not a CM field. | |||
Integral basis (with respect to field generator \(a\))
$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $a^{6}$, $a^{7}$, $a^{8}$, $a^{9}$, $a^{10}$, $a^{11}$, $a^{12}$, $a^{13}$, $a^{14}$, $a^{15}$, $a^{16}$, $a^{17}$, $\frac{1}{881666} a^{18} - \frac{30575}{881666} a^{17} + \frac{71185}{440833} a^{16} + \frac{422339}{881666} a^{15} - \frac{351027}{881666} a^{14} + \frac{67195}{881666} a^{13} + \frac{414433}{881666} a^{12} - \frac{78989}{440833} a^{11} + \frac{123160}{440833} a^{10} + \frac{218533}{881666} a^{9} + \frac{123160}{440833} a^{8} - \frac{78989}{440833} a^{7} + \frac{414433}{881666} a^{6} + \frac{67195}{881666} a^{5} - \frac{351027}{881666} a^{4} + \frac{422339}{881666} a^{3} + \frac{71185}{440833} a^{2} - \frac{30575}{881666} a + \frac{1}{881666}$, $\frac{1}{881666} a^{19} - \frac{122295}{881666} a^{17} - \frac{281619}{881666} a^{16} - \frac{108169}{440833} a^{15} - \frac{31556}{440833} a^{14} - \frac{130944}{440833} a^{13} - \frac{172755}{881666} a^{12} - \frac{82341}{440833} a^{11} + \frac{261561}{881666} a^{10} - \frac{253819}{881666} a^{9} - \frac{57475}{440833} a^{8} + \frac{3431}{881666} a^{7} + \frac{26209}{440833} a^{6} - \frac{72841}{440833} a^{5} + \frac{146016}{440833} a^{4} + \frac{277059}{881666} a^{3} + \frac{147133}{881666} a^{2} - \frac{132332}{440833} a + \frac{30575}{881666}$
Class group and class number
Trivial group, which has order $1$ (assuming GRH)
Unit group
| Rank: | $11$ | magma: UnitRank(K);
sage: UK.rank()
gp: K.fu
| |
| Torsion generator: | \( -1 \) (order $2$) | magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
sage: UK.torsion_generator()
gp: K.tu[2]
| |
| Fundamental units: | Units are too long to display, but can be downloaded with other data for this field from 'Stored data to gp' link to the right (assuming GRH) | magma: [K!f(g): g in Generators(UK)];
sage: UK.fundamental_units()
gp: K.fu
| |
| Regulator: | \( 40088.5657487 \) (assuming GRH) | magma: Regulator(K);
sage: K.regulator()
gp: K.reg
|
Galois group
| A non-solvable group of order 61440 |
| The 126 conjugacy class representatives for t20n669 are not computed |
| Character table for t20n669 is not computed |
Intermediate fields
| 5.5.224773.1, 10.2.2677713781037.1, 10.6.50522901529.1, 10.6.2677713781037.1 |
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Sibling fields
Frobenius cycle types
| $p$ | 2 | 3 | 5 | 7 | 11 | 13 | 17 | 19 | 23 | 29 | 31 | 37 | 41 | 43 | 47 | 53 | 59 |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Cycle type | ${\href{/LocalNumberField/2.8.0.1}{8} }^{2}{,}\,{\href{/LocalNumberField/2.2.0.1}{2} }^{2}$ | ${\href{/LocalNumberField/3.10.0.1}{10} }^{2}$ | ${\href{/LocalNumberField/5.8.0.1}{8} }^{2}{,}\,{\href{/LocalNumberField/5.2.0.1}{2} }^{2}$ | ${\href{/LocalNumberField/7.6.0.1}{6} }^{2}{,}\,{\href{/LocalNumberField/7.4.0.1}{4} }^{2}$ | ${\href{/LocalNumberField/11.8.0.1}{8} }^{2}{,}\,{\href{/LocalNumberField/11.2.0.1}{2} }^{2}$ | ${\href{/LocalNumberField/13.5.0.1}{5} }^{4}$ | ${\href{/LocalNumberField/17.5.0.1}{5} }^{4}$ | ${\href{/LocalNumberField/19.8.0.1}{8} }^{2}{,}\,{\href{/LocalNumberField/19.2.0.1}{2} }^{2}$ | ${\href{/LocalNumberField/23.4.0.1}{4} }^{2}{,}\,{\href{/LocalNumberField/23.2.0.1}{2} }^{6}$ | ${\href{/LocalNumberField/29.5.0.1}{5} }^{4}$ | ${\href{/LocalNumberField/31.6.0.1}{6} }^{2}{,}\,{\href{/LocalNumberField/31.4.0.1}{4} }^{2}$ | ${\href{/LocalNumberField/37.6.0.1}{6} }^{2}{,}\,{\href{/LocalNumberField/37.4.0.1}{4} }^{2}$ | ${\href{/LocalNumberField/41.8.0.1}{8} }^{2}{,}\,{\href{/LocalNumberField/41.1.0.1}{1} }^{4}$ | ${\href{/LocalNumberField/43.6.0.1}{6} }^{2}{,}\,{\href{/LocalNumberField/43.4.0.1}{4} }^{2}$ | ${\href{/LocalNumberField/47.4.0.1}{4} }^{4}{,}\,{\href{/LocalNumberField/47.1.0.1}{1} }^{4}$ | R | ${\href{/LocalNumberField/59.6.0.1}{6} }^{2}{,}\,{\href{/LocalNumberField/59.4.0.1}{4} }^{2}$ |
In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
| $p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
|---|---|---|---|---|---|---|---|
| $53$ | 53.2.0.1 | $x^{2} - x + 5$ | $1$ | $2$ | $0$ | $C_2$ | $[\ ]^{2}$ |
| 53.2.0.1 | $x^{2} - x + 5$ | $1$ | $2$ | $0$ | $C_2$ | $[\ ]^{2}$ | |
| 53.2.0.1 | $x^{2} - x + 5$ | $1$ | $2$ | $0$ | $C_2$ | $[\ ]^{2}$ | |
| 53.2.0.1 | $x^{2} - x + 5$ | $1$ | $2$ | $0$ | $C_2$ | $[\ ]^{2}$ | |
| 53.2.0.1 | $x^{2} - x + 5$ | $1$ | $2$ | $0$ | $C_2$ | $[\ ]^{2}$ | |
| 53.2.0.1 | $x^{2} - x + 5$ | $1$ | $2$ | $0$ | $C_2$ | $[\ ]^{2}$ | |
| 53.4.3.4 | $x^{4} + 424$ | $4$ | $1$ | $3$ | $C_4$ | $[\ ]_{4}$ | |
| 53.4.3.4 | $x^{4} + 424$ | $4$ | $1$ | $3$ | $C_4$ | $[\ ]_{4}$ | |
| 4241 | Data not computed | ||||||