Normalized defining polynomial
\( x^{20} - 5 x^{19} - 4 x^{18} + 49 x^{17} - 6 x^{16} - 317 x^{15} + 337 x^{14} + 929 x^{13} - 2250 x^{12} + 1536 x^{11} - 1083 x^{10} + 4072 x^{9} - 4986 x^{8} + 2361 x^{7} - 2813 x^{6} + 3137 x^{5} - 686 x^{4} - 147 x^{3} - 186 x^{2} + 19 x + 51 \)
Invariants
| Degree: | $20$ | magma: Degree(K);
sage: K.degree()
gp: poldegree(K.pol)
| |
| Signature: | $[4, 8]$ | magma: Signature(K);
sage: K.signature()
gp: K.sign
| |
| Discriminant: | \(705364768808763611651745450561=3^{8}\cdot 401^{10}\) | magma: Discriminant(Integers(K));
sage: K.disc()
gp: K.disc
| |
| Root discriminant: | $31.08$ | magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
sage: (K.disc().abs())^(1./K.degree())
gp: abs(K.disc)^(1/poldegree(K.pol))
| |
| Ramified primes: | $3, 401$ | magma: PrimeDivisors(Discriminant(Integers(K)));
sage: K.disc().support()
gp: factor(abs(K.disc))[,1]~
| |
| This field is not Galois over $\Q$. | |||
| This is not a CM field. | |||
Integral basis (with respect to field generator \(a\))
$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $a^{6}$, $a^{7}$, $a^{8}$, $a^{9}$, $a^{10}$, $a^{11}$, $a^{12}$, $a^{13}$, $a^{14}$, $a^{15}$, $a^{16}$, $a^{17}$, $a^{18}$, $\frac{1}{412594363787936452695584961359320599} a^{19} - \frac{205455163157862440128356088711194706}{412594363787936452695584961359320599} a^{18} - \frac{50522271429812785244384136064768289}{412594363787936452695584961359320599} a^{17} + \frac{72200472058670146881879797092317059}{412594363787936452695584961359320599} a^{16} - \frac{202654723023156822919396850786448007}{412594363787936452695584961359320599} a^{15} + \frac{21060006127016466701849954440224935}{137531454595978817565194987119773533} a^{14} - \frac{131126237406994722222510307200306674}{412594363787936452695584961359320599} a^{13} + \frac{60777139962040402656977747361062750}{137531454595978817565194987119773533} a^{12} - \frac{1493900259230817715338548832625932}{10579342661229139812707306701521041} a^{11} + \frac{42312772541723746584724981565094404}{137531454595978817565194987119773533} a^{10} + \frac{20779841544125812173639026853718894}{137531454595978817565194987119773533} a^{9} + \frac{33928774664087120180877095454800794}{412594363787936452695584961359320599} a^{8} + \frac{204302601218746973505907710071573251}{412594363787936452695584961359320599} a^{7} - \frac{31581072101804761367048025650918762}{412594363787936452695584961359320599} a^{6} + \frac{28922086982347872059956767006796754}{412594363787936452695584961359320599} a^{5} + \frac{9567185209846738164609014579834848}{412594363787936452695584961359320599} a^{4} + \frac{76460087296012147149453827685958145}{412594363787936452695584961359320599} a^{3} + \frac{31728187748156656543620776070989789}{412594363787936452695584961359320599} a^{2} + \frac{169388808141978442523938594406495993}{412594363787936452695584961359320599} a + \frac{53969605061737871967349121849446405}{137531454595978817565194987119773533}$
Class group and class number
$C_{4}$, which has order $4$ (assuming GRH)
Unit group
| Rank: | $11$ | magma: UnitRank(K);
sage: UK.rank()
gp: K.fu
| |
| Torsion generator: | \( -1 \) (order $2$) | magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
sage: UK.torsion_generator()
gp: K.tu[2]
| |
| Fundamental units: | Units are too long to display, but can be downloaded with other data for this field from 'Stored data to gp' link to the right (assuming GRH) | magma: [K!f(g): g in Generators(UK)];
sage: UK.fundamental_units()
gp: K.fu
| |
| Regulator: | \( 13089361.5818 \) (assuming GRH) | magma: Regulator(K);
sage: K.regulator()
gp: K.reg
|
Galois group
$C_2^4:D_5$ (as 20T45):
| A solvable group of order 160 |
| The 10 conjugacy class representatives for $C_2^4:D_5$ |
| Character table for $C_2^4:D_5$ |
Intermediate fields
| 5.5.160801.1, 10.6.839859969762081.2, 10.6.93317774418009.2, 10.2.232712654409.1 |
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Sibling fields
| Degree 10 siblings: | data not computed |
| Degree 16 sibling: | data not computed |
| Degree 20 siblings: | data not computed |
| Degree 32 sibling: | data not computed |
| Degree 40 siblings: | data not computed |
Frobenius cycle types
| $p$ | 2 | 3 | 5 | 7 | 11 | 13 | 17 | 19 | 23 | 29 | 31 | 37 | 41 | 43 | 47 | 53 | 59 |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Cycle type | ${\href{/LocalNumberField/2.5.0.1}{5} }^{4}$ | R | ${\href{/LocalNumberField/5.5.0.1}{5} }^{4}$ | ${\href{/LocalNumberField/7.5.0.1}{5} }^{4}$ | ${\href{/LocalNumberField/11.5.0.1}{5} }^{4}$ | ${\href{/LocalNumberField/13.4.0.1}{4} }^{4}{,}\,{\href{/LocalNumberField/13.2.0.1}{2} }^{2}$ | ${\href{/LocalNumberField/17.4.0.1}{4} }^{4}{,}\,{\href{/LocalNumberField/17.1.0.1}{1} }^{4}$ | ${\href{/LocalNumberField/19.4.0.1}{4} }^{4}{,}\,{\href{/LocalNumberField/19.1.0.1}{1} }^{4}$ | ${\href{/LocalNumberField/23.2.0.1}{2} }^{10}$ | ${\href{/LocalNumberField/29.5.0.1}{5} }^{4}$ | ${\href{/LocalNumberField/31.4.0.1}{4} }^{4}{,}\,{\href{/LocalNumberField/31.2.0.1}{2} }^{2}$ | ${\href{/LocalNumberField/37.4.0.1}{4} }^{4}{,}\,{\href{/LocalNumberField/37.2.0.1}{2} }^{2}$ | ${\href{/LocalNumberField/41.5.0.1}{5} }^{4}$ | ${\href{/LocalNumberField/43.5.0.1}{5} }^{4}$ | ${\href{/LocalNumberField/47.5.0.1}{5} }^{4}$ | ${\href{/LocalNumberField/53.2.0.1}{2} }^{10}$ | ${\href{/LocalNumberField/59.4.0.1}{4} }^{4}{,}\,{\href{/LocalNumberField/59.2.0.1}{2} }^{2}$ |
In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
| $p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
|---|---|---|---|---|---|---|---|
| $3$ | $\Q_{3}$ | $x + 1$ | $1$ | $1$ | $0$ | Trivial | $[\ ]$ |
| $\Q_{3}$ | $x + 1$ | $1$ | $1$ | $0$ | Trivial | $[\ ]$ | |
| $\Q_{3}$ | $x + 1$ | $1$ | $1$ | $0$ | Trivial | $[\ ]$ | |
| $\Q_{3}$ | $x + 1$ | $1$ | $1$ | $0$ | Trivial | $[\ ]$ | |
| 3.8.4.1 | $x^{8} + 36 x^{4} - 27 x^{2} + 324$ | $2$ | $4$ | $4$ | $C_4\times C_2$ | $[\ ]_{2}^{4}$ | |
| 3.8.4.1 | $x^{8} + 36 x^{4} - 27 x^{2} + 324$ | $2$ | $4$ | $4$ | $C_4\times C_2$ | $[\ ]_{2}^{4}$ | |
| 401 | Data not computed | ||||||