Normalized defining polynomial
\( x^{20} - 10 x^{19} + 50 x^{18} - 125 x^{17} + 1860 x^{15} - 9890 x^{14} + 24775 x^{13} - 9225 x^{12} - 118470 x^{11} + 304481 x^{10} - 237210 x^{9} - 126510 x^{8} + 231495 x^{7} + 35660 x^{6} - 85670 x^{5} - 85930 x^{4} - 58815 x^{3} - 25885 x^{2} - 8870 x - 1696 \)
Invariants
| Degree: | $20$ | magma: Degree(K);
sage: K.degree()
gp: poldegree(K.pol)
| |
| Signature: | $[4, 8]$ | magma: Signature(K);
sage: K.signature()
gp: K.sign
| |
| Discriminant: | \(6824548367285289270877838134765625=5^{22}\cdot 17^{15}\) | magma: Discriminant(Integers(K));
sage: K.disc()
gp: K.disc
| |
| Root discriminant: | $49.17$ | magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
sage: (K.disc().abs())^(1./K.degree())
gp: abs(K.disc)^(1/poldegree(K.pol))
| |
| Ramified primes: | $5, 17$ | magma: PrimeDivisors(Discriminant(Integers(K)));
sage: K.disc().support()
gp: factor(abs(K.disc))[,1]~
| |
| This field is not Galois over $\Q$. | |||
| This is not a CM field. | |||
Integral basis (with respect to field generator \(a\))
$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $a^{6}$, $a^{7}$, $a^{8}$, $a^{9}$, $\frac{1}{2} a^{10} - \frac{1}{2} a^{7} - \frac{1}{2} a^{6} - \frac{1}{2} a^{5} - \frac{1}{2} a^{2} - \frac{1}{2} a$, $\frac{1}{2} a^{11} - \frac{1}{2} a^{8} - \frac{1}{2} a^{7} - \frac{1}{2} a^{6} - \frac{1}{2} a^{3} - \frac{1}{2} a^{2}$, $\frac{1}{2} a^{12} - \frac{1}{2} a^{9} - \frac{1}{2} a^{8} - \frac{1}{2} a^{7} - \frac{1}{2} a^{4} - \frac{1}{2} a^{3}$, $\frac{1}{2} a^{13} - \frac{1}{2} a^{9} - \frac{1}{2} a^{8} - \frac{1}{2} a^{7} - \frac{1}{2} a^{6} - \frac{1}{2} a^{4} - \frac{1}{2} a^{2} - \frac{1}{2} a$, $\frac{1}{2} a^{14} - \frac{1}{2} a^{9} - \frac{1}{2} a^{8} - \frac{1}{2} a^{6} - \frac{1}{2} a^{3} - \frac{1}{2} a$, $\frac{1}{2} a^{15} - \frac{1}{2} a^{9} - \frac{1}{2} a^{6} - \frac{1}{2} a^{5} - \frac{1}{2} a^{4} - \frac{1}{2} a$, $\frac{1}{12} a^{16} - \frac{1}{6} a^{14} - \frac{1}{4} a^{13} + \frac{1}{12} a^{12} + \frac{1}{6} a^{11} - \frac{1}{6} a^{10} + \frac{1}{3} a^{9} + \frac{1}{3} a^{8} + \frac{1}{6} a^{7} + \frac{1}{4} a^{6} - \frac{1}{6} a^{5} + \frac{1}{6} a^{4} - \frac{1}{12} a^{3} - \frac{1}{4} a^{2} - \frac{1}{2} a - \frac{1}{3}$, $\frac{1}{168} a^{17} - \frac{1}{168} a^{16} - \frac{1}{12} a^{15} - \frac{1}{168} a^{14} + \frac{17}{84} a^{13} - \frac{5}{168} a^{12} - \frac{2}{21} a^{11} + \frac{3}{14} a^{10} + \frac{2}{7} a^{9} + \frac{17}{84} a^{8} + \frac{19}{168} a^{7} - \frac{5}{168} a^{6} - \frac{19}{84} a^{5} + \frac{15}{56} a^{4} - \frac{4}{21} a^{3} + \frac{19}{56} a^{2} - \frac{5}{84} a + \frac{5}{21}$, $\frac{1}{138768} a^{18} + \frac{83}{34692} a^{17} + \frac{3797}{138768} a^{16} - \frac{22723}{138768} a^{15} + \frac{5861}{138768} a^{14} + \frac{24673}{138768} a^{13} + \frac{8689}{46256} a^{12} + \frac{101}{708} a^{11} - \frac{487}{17346} a^{10} - \frac{17597}{69384} a^{9} - \frac{58603}{138768} a^{8} + \frac{7097}{23128} a^{7} - \frac{2627}{138768} a^{6} - \frac{23753}{138768} a^{5} - \frac{2921}{46256} a^{4} - \frac{4243}{138768} a^{3} - \frac{7405}{138768} a^{2} + \frac{1679}{9912} a - \frac{1894}{8673}$, $\frac{1}{2063209665730615622761040651229650955915240576} a^{19} + \frac{175869364063465238324003074444740156883}{98248079320505505845763840534745283615011456} a^{18} - \frac{1217981409450527900657463029889840857067293}{687736555243538540920346883743216985305080192} a^{17} - \frac{429049490448836781308558528359464149307709}{11995405033317532690471166576916575325088608} a^{16} - \frac{769148283753556783380736695162143952773911}{3998468344439177563490388858972191775029536} a^{15} + \frac{26126335833422123659488654920995702608037985}{257901208216326952845130081403706369489405072} a^{14} - \frac{74193479324975114583680871572658128006848975}{343868277621769270460173441871608492652540096} a^{13} - \frac{16798343678043385090063818924932623518500291}{2063209665730615622761040651229650955915240576} a^{12} + \frac{67647288321568967453450442719544696911637883}{515802416432653905690260162807412738978810144} a^{11} - \frac{10748581269710692658151025601583151410184553}{49124039660252752922881920267372641807505728} a^{10} - \frac{745191970618091172025320714600022538034618377}{2063209665730615622761040651229650955915240576} a^{9} - \frac{970358748182628491775350808345805702433266427}{2063209665730615622761040651229650955915240576} a^{8} + \frac{359107253883681571057465736829117997911297}{1767960296255883138612716924789760887673728} a^{7} - \frac{386548233836278581579761074966969919769723553}{1031604832865307811380520325614825477957620288} a^{6} - \frac{10884215361080270364259931683730661312940007}{49124039660252752922881920267372641807505728} a^{5} - \frac{55998965476945729648685681450096168130752263}{515802416432653905690260162807412738978810144} a^{4} - \frac{92913305024514959444071806114747453320727345}{343868277621769270460173441871608492652540096} a^{3} - \frac{217033715313741782833076768018184937277667303}{687736555243538540920346883743216985305080192} a^{2} + \frac{480468822709409412587464352313478128546651419}{1031604832865307811380520325614825477957620288} a - \frac{849279318316068138481580127034194115433743}{64475302054081738211282520350926592372351268}$
Class group and class number
$C_{2}$, which has order $2$ (assuming GRH)
Unit group
| Rank: | $11$ | magma: UnitRank(K);
sage: UK.rank()
gp: K.fu
| |
| Torsion generator: | \( -1 \) (order $2$) | magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
sage: UK.torsion_generator()
gp: K.tu[2]
| |
| Fundamental units: | Units are too long to display, but can be downloaded with other data for this field from 'Stored data to gp' link to the right (assuming GRH) | magma: [K!f(g): g in Generators(UK)];
sage: UK.fundamental_units()
gp: K.fu
| |
| Regulator: | \( 7366772724.975502 \) (assuming GRH) | magma: Regulator(K);
sage: K.regulator()
gp: K.reg
|
Galois group
$C_4\times F_5$ (as 20T20):
| A solvable group of order 80 |
| The 20 conjugacy class representatives for $C_4\times F_5$ |
| Character table for $C_4\times F_5$ |
Intermediate fields
| \(\Q(\sqrt{17}) \), 4.4.122825.1, 5.1.903125.1, 10.2.13865791015625.1 |
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Sibling fields
Frobenius cycle types
| $p$ | 2 | 3 | 5 | 7 | 11 | 13 | 17 | 19 | 23 | 29 | 31 | 37 | 41 | 43 | 47 | 53 | 59 |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Cycle type | ${\href{/LocalNumberField/2.4.0.1}{4} }^{4}{,}\,{\href{/LocalNumberField/2.1.0.1}{1} }^{4}$ | ${\href{/LocalNumberField/3.4.0.1}{4} }^{5}$ | R | ${\href{/LocalNumberField/7.4.0.1}{4} }^{5}$ | ${\href{/LocalNumberField/11.4.0.1}{4} }^{5}$ | ${\href{/LocalNumberField/13.4.0.1}{4} }^{4}{,}\,{\href{/LocalNumberField/13.2.0.1}{2} }^{2}$ | R | ${\href{/LocalNumberField/19.2.0.1}{2} }^{10}$ | ${\href{/LocalNumberField/23.4.0.1}{4} }^{5}$ | $20$ | ${\href{/LocalNumberField/31.4.0.1}{4} }^{5}$ | ${\href{/LocalNumberField/37.4.0.1}{4} }^{5}$ | ${\href{/LocalNumberField/41.4.0.1}{4} }^{5}$ | ${\href{/LocalNumberField/43.4.0.1}{4} }^{4}{,}\,{\href{/LocalNumberField/43.1.0.1}{1} }^{4}$ | ${\href{/LocalNumberField/47.4.0.1}{4} }^{4}{,}\,{\href{/LocalNumberField/47.2.0.1}{2} }^{2}$ | ${\href{/LocalNumberField/53.4.0.1}{4} }^{4}{,}\,{\href{/LocalNumberField/53.1.0.1}{1} }^{4}$ | ${\href{/LocalNumberField/59.2.0.1}{2} }^{10}$ |
In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
| $p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
|---|---|---|---|---|---|---|---|
| 5 | Data not computed | ||||||
| 17 | Data not computed | ||||||