Normalized defining polynomial
\( x^{20} - 3 x^{19} + 9 x^{18} - 22 x^{17} - 85 x^{16} + 323 x^{15} - 905 x^{14} + 1420 x^{13} + 4054 x^{12} - 9823 x^{11} + 20495 x^{10} - 36252 x^{9} - 84009 x^{8} + 175959 x^{7} - 191010 x^{6} + 103206 x^{5} + 1774933 x^{4} - 1390951 x^{3} - 3945749 x^{2} + 1720233 x + 3305893 \)
Invariants
| Degree: | $20$ | magma: Degree(K);
sage: K.degree()
gp: poldegree(K.pol)
| |
| Signature: | $[4, 8]$ | magma: Signature(K);
sage: K.signature()
gp: K.sign
| |
| Discriminant: | \(67818189235974116781402778056633=3^{10}\cdot 17^{7}\cdot 97^{2}\cdot 4153^{4}\) | magma: Discriminant(Integers(K));
sage: K.disc()
gp: K.disc
| |
| Root discriminant: | $39.05$ | magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
sage: (K.disc().abs())^(1./K.degree())
gp: abs(K.disc)^(1/poldegree(K.pol))
| |
| Ramified primes: | $3, 17, 97, 4153$ | magma: PrimeDivisors(Discriminant(Integers(K)));
sage: K.disc().support()
gp: factor(abs(K.disc))[,1]~
| |
| This field is not Galois over $\Q$. | |||
| This is not a CM field. | |||
Integral basis (with respect to field generator \(a\))
$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $a^{6}$, $a^{7}$, $a^{8}$, $a^{9}$, $a^{10}$, $a^{11}$, $a^{12}$, $a^{13}$, $a^{14}$, $\frac{1}{2} a^{15} - \frac{1}{2} a^{14} - \frac{1}{2} a^{13} - \frac{1}{2} a^{12} - \frac{1}{2} a^{10} - \frac{1}{2} a^{9} - \frac{1}{2} a^{8} - \frac{1}{2} a^{5} - \frac{1}{2} a^{4} - \frac{1}{2} a - \frac{1}{2}$, $\frac{1}{6} a^{16} + \frac{1}{6} a^{15} - \frac{1}{6} a^{14} + \frac{1}{6} a^{13} - \frac{1}{2} a^{11} + \frac{1}{6} a^{10} + \frac{1}{6} a^{9} + \frac{1}{3} a^{7} - \frac{1}{6} a^{6} - \frac{1}{2} a^{5} + \frac{1}{3} a^{3} - \frac{1}{2} a^{2} - \frac{1}{6} a - \frac{1}{3}$, $\frac{1}{6} a^{17} + \frac{1}{6} a^{15} - \frac{1}{6} a^{14} + \frac{1}{3} a^{13} - \frac{1}{3} a^{11} - \frac{1}{2} a^{10} + \frac{1}{3} a^{9} - \frac{1}{6} a^{8} - \frac{1}{2} a^{7} - \frac{1}{3} a^{6} - \frac{1}{6} a^{4} + \frac{1}{6} a^{3} + \frac{1}{3} a^{2} + \frac{1}{3} a - \frac{1}{6}$, $\frac{1}{18} a^{18} - \frac{1}{18} a^{17} - \frac{1}{18} a^{16} + \frac{1}{9} a^{15} - \frac{1}{18} a^{14} + \frac{4}{9} a^{13} - \frac{4}{9} a^{12} - \frac{1}{18} a^{11} + \frac{1}{6} a^{10} + \frac{1}{18} a^{9} - \frac{1}{9} a^{8} - \frac{1}{6} a^{7} - \frac{1}{9} a^{6} - \frac{7}{18} a^{5} + \frac{4}{9} a^{4} + \frac{1}{6} a^{3} - \frac{1}{3} a^{2} - \frac{1}{18} a + \frac{5}{18}$, $\frac{1}{278491967994665135815749234363319480049106079884068020278} a^{19} - \frac{670291038094489599744781148314773909444638737332656219}{30943551999407237312861026040368831116567342209340891142} a^{18} - \frac{5889691902004285740577281468413056876545402073728438685}{139245983997332567907874617181659740024553039942034010139} a^{17} + \frac{16446260207479616163875274776369998481597445517314289357}{278491967994665135815749234363319480049106079884068020278} a^{16} - \frac{4890345338797199050278381363919713593073284957777911648}{139245983997332567907874617181659740024553039942034010139} a^{15} - \frac{138636767219731865365962616456411724935857606093714598661}{278491967994665135815749234363319480049106079884068020278} a^{14} - \frac{18640381171510184410328189810947341978142715972092276499}{46415327999110855969291539060553246674851013314011336713} a^{13} - \frac{5969359165159463138604580107421167450594903185873246424}{15471775999703618656430513020184415558283671104670445571} a^{12} - \frac{37552878329026021101720473385219309354931098774413472461}{139245983997332567907874617181659740024553039942034010139} a^{11} + \frac{946800289657682921392644691118875125896387794056575324}{139245983997332567907874617181659740024553039942034010139} a^{10} + \frac{30305994296143620476482795082861816283405767182183972162}{139245983997332567907874617181659740024553039942034010139} a^{9} - \frac{22848924562040859383054471781220026553505831207596285517}{278491967994665135815749234363319480049106079884068020278} a^{8} - \frac{4648267509131645311308975792348348008458026854237026679}{278491967994665135815749234363319480049106079884068020278} a^{7} - \frac{3447582054186666880407859865870627461719178570401209080}{46415327999110855969291539060553246674851013314011336713} a^{6} + \frac{22580849590395086139626675328445340457380224482079320494}{139245983997332567907874617181659740024553039942034010139} a^{5} - \frac{100750163152605338404186450132113993753613819411509729691}{278491967994665135815749234363319480049106079884068020278} a^{4} - \frac{13794349355864479139843681038494460854517481279352549819}{30943551999407237312861026040368831116567342209340891142} a^{3} + \frac{51428215009994212444754750321077690326148402960929175858}{139245983997332567907874617181659740024553039942034010139} a^{2} - \frac{111480325101029140774759800610811583982838556115277441033}{278491967994665135815749234363319480049106079884068020278} a + \frac{21506743389007661241839825003111047802968786690685003107}{139245983997332567907874617181659740024553039942034010139}$
Class group and class number
$C_{2}$, which has order $2$ (assuming GRH)
Unit group
| Rank: | $11$ | magma: UnitRank(K);
sage: UK.rank()
gp: K.fu
| |
| Torsion generator: | \( -1 \) (order $2$) | magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
sage: UK.torsion_generator()
gp: K.tu[2]
| |
| Fundamental units: | Units are too long to display, but can be downloaded with other data for this field from 'Stored data to gp' link to the right (assuming GRH) | magma: [K!f(g): g in Generators(UK)];
sage: UK.fundamental_units()
gp: K.fu
| |
| Regulator: | \( 47188289.0461 \) (assuming GRH) | magma: Regulator(K);
sage: K.regulator()
gp: K.reg
|
Galois group
| A non-solvable group of order 122880 |
| The 138 conjugacy class representatives for t20n804 are not computed |
| Character table for t20n804 is not computed |
Intermediate fields
| 5.5.70601.1, 10.6.44860510809.1 |
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Sibling fields
Frobenius cycle types
| $p$ | 2 | 3 | 5 | 7 | 11 | 13 | 17 | 19 | 23 | 29 | 31 | 37 | 41 | 43 | 47 | 53 | 59 |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Cycle type | ${\href{/LocalNumberField/2.5.0.1}{5} }^{4}$ | R | ${\href{/LocalNumberField/5.10.0.1}{10} }{,}\,{\href{/LocalNumberField/5.5.0.1}{5} }^{2}$ | ${\href{/LocalNumberField/7.8.0.1}{8} }^{2}{,}\,{\href{/LocalNumberField/7.4.0.1}{4} }$ | ${\href{/LocalNumberField/11.6.0.1}{6} }{,}\,{\href{/LocalNumberField/11.4.0.1}{4} }^{2}{,}\,{\href{/LocalNumberField/11.3.0.1}{3} }^{2}$ | ${\href{/LocalNumberField/13.6.0.1}{6} }^{2}{,}\,{\href{/LocalNumberField/13.2.0.1}{2} }^{4}$ | R | ${\href{/LocalNumberField/19.10.0.1}{10} }^{2}$ | ${\href{/LocalNumberField/23.8.0.1}{8} }^{2}{,}\,{\href{/LocalNumberField/23.4.0.1}{4} }$ | ${\href{/LocalNumberField/29.8.0.1}{8} }^{2}{,}\,{\href{/LocalNumberField/29.4.0.1}{4} }$ | ${\href{/LocalNumberField/31.10.0.1}{10} }{,}\,{\href{/LocalNumberField/31.5.0.1}{5} }^{2}$ | ${\href{/LocalNumberField/37.6.0.1}{6} }{,}\,{\href{/LocalNumberField/37.3.0.1}{3} }^{2}{,}\,{\href{/LocalNumberField/37.2.0.1}{2} }^{4}$ | ${\href{/LocalNumberField/41.10.0.1}{10} }{,}\,{\href{/LocalNumberField/41.5.0.1}{5} }^{2}$ | ${\href{/LocalNumberField/43.5.0.1}{5} }^{4}$ | ${\href{/LocalNumberField/47.6.0.1}{6} }^{2}{,}\,{\href{/LocalNumberField/47.2.0.1}{2} }^{4}$ | ${\href{/LocalNumberField/53.4.0.1}{4} }^{2}{,}\,{\href{/LocalNumberField/53.2.0.1}{2} }^{4}{,}\,{\href{/LocalNumberField/53.1.0.1}{1} }^{4}$ | ${\href{/LocalNumberField/59.6.0.1}{6} }^{2}{,}\,{\href{/LocalNumberField/59.4.0.1}{4} }^{2}$ |
In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
| $p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
|---|---|---|---|---|---|---|---|
| $3$ | 3.4.2.2 | $x^{4} - 3 x^{2} + 18$ | $2$ | $2$ | $2$ | $C_4$ | $[\ ]_{2}^{2}$ |
| 3.4.2.2 | $x^{4} - 3 x^{2} + 18$ | $2$ | $2$ | $2$ | $C_4$ | $[\ ]_{2}^{2}$ | |
| 3.12.6.1 | $x^{12} - 243 x^{2} + 1458$ | $2$ | $6$ | $6$ | $C_{12}$ | $[\ ]_{2}^{6}$ | |
| $17$ | 17.2.1.2 | $x^{2} + 51$ | $2$ | $1$ | $1$ | $C_2$ | $[\ ]_{2}$ |
| 17.2.1.2 | $x^{2} + 51$ | $2$ | $1$ | $1$ | $C_2$ | $[\ ]_{2}$ | |
| 17.4.2.1 | $x^{4} + 85 x^{2} + 2601$ | $2$ | $2$ | $2$ | $C_2^2$ | $[\ ]_{2}^{2}$ | |
| 17.6.0.1 | $x^{6} - x + 12$ | $1$ | $6$ | $0$ | $C_6$ | $[\ ]^{6}$ | |
| 17.6.3.2 | $x^{6} - 289 x^{2} + 14739$ | $2$ | $3$ | $3$ | $C_6$ | $[\ ]_{2}^{3}$ | |
| $97$ | 97.4.2.2 | $x^{4} - 97 x^{2} + 47045$ | $2$ | $2$ | $2$ | $C_4$ | $[\ ]_{2}^{2}$ |
| 97.8.0.1 | $x^{8} - x + 84$ | $1$ | $8$ | $0$ | $C_8$ | $[\ ]^{8}$ | |
| 97.8.0.1 | $x^{8} - x + 84$ | $1$ | $8$ | $0$ | $C_8$ | $[\ ]^{8}$ | |
| 4153 | Data not computed | ||||||