Normalized defining polynomial
\( x^{20} - 6 x^{19} + 21 x^{18} - 63 x^{17} + 169 x^{16} - 416 x^{15} + 844 x^{14} - 1309 x^{13} + 1591 x^{12} - 1528 x^{11} + 990 x^{10} - 8 x^{9} - 239 x^{8} - 566 x^{7} + 519 x^{6} + 343 x^{5} + 497 x^{4} - 2148 x^{3} + 606 x^{2} + 1269 x - 603 \)
Invariants
| Degree: | $20$ | magma: Degree(K);
sage: K.degree()
gp: poldegree(K.pol)
| |
| Signature: | $[4, 8]$ | magma: Signature(K);
sage: K.signature()
gp: K.sign
| |
| Discriminant: | \(67729015206972914876701104384=2^{8}\cdot 3^{6}\cdot 881^{8}\) | magma: Discriminant(Integers(K));
sage: K.disc()
gp: K.disc
| |
| Root discriminant: | $27.64$ | magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
sage: (K.disc().abs())^(1./K.degree())
gp: abs(K.disc)^(1/poldegree(K.pol))
| |
| Ramified primes: | $2, 3, 881$ | magma: PrimeDivisors(Discriminant(Integers(K)));
sage: K.disc().support()
gp: factor(abs(K.disc))[,1]~
| |
| This field is not Galois over $\Q$. | |||
| This is not a CM field. | |||
Integral basis (with respect to field generator \(a\))
$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $a^{6}$, $a^{7}$, $a^{8}$, $a^{9}$, $a^{10}$, $a^{11}$, $a^{12}$, $\frac{1}{2} a^{13} - \frac{1}{2} a^{12} - \frac{1}{2} a^{10} - \frac{1}{2} a^{7} - \frac{1}{2} a^{4} - \frac{1}{2}$, $\frac{1}{2} a^{14} - \frac{1}{2} a^{12} - \frac{1}{2} a^{11} - \frac{1}{2} a^{10} - \frac{1}{2} a^{8} - \frac{1}{2} a^{7} - \frac{1}{2} a^{5} - \frac{1}{2} a^{4} - \frac{1}{2} a - \frac{1}{2}$, $\frac{1}{4} a^{15} - \frac{1}{2} a^{12} - \frac{1}{4} a^{11} - \frac{1}{4} a^{10} + \frac{1}{4} a^{9} + \frac{1}{4} a^{8} - \frac{1}{4} a^{7} + \frac{1}{4} a^{6} + \frac{1}{4} a^{5} + \frac{1}{4} a^{4} + \frac{1}{4} a^{2} - \frac{1}{4} a + \frac{1}{4}$, $\frac{1}{12} a^{16} - \frac{1}{12} a^{15} - \frac{1}{6} a^{13} - \frac{1}{4} a^{12} - \frac{1}{6} a^{10} + \frac{1}{3} a^{9} + \frac{1}{6} a^{8} + \frac{1}{6} a^{7} - \frac{1}{3} a^{6} - \frac{1}{12} a^{4} + \frac{5}{12} a^{3} + \frac{1}{6} a^{2} - \frac{1}{2} a + \frac{1}{4}$, $\frac{1}{12} a^{17} - \frac{1}{12} a^{15} - \frac{1}{6} a^{14} + \frac{1}{12} a^{13} + \frac{1}{4} a^{12} - \frac{1}{6} a^{11} - \frac{1}{3} a^{10} - \frac{1}{2} a^{9} + \frac{1}{3} a^{8} + \frac{1}{3} a^{7} - \frac{1}{3} a^{6} - \frac{1}{12} a^{5} - \frac{1}{6} a^{4} - \frac{5}{12} a^{3} - \frac{1}{3} a^{2} - \frac{1}{4} a - \frac{1}{4}$, $\frac{1}{36} a^{18} - \frac{1}{12} a^{15} + \frac{1}{36} a^{14} - \frac{5}{36} a^{13} - \frac{11}{36} a^{12} + \frac{2}{9} a^{11} - \frac{1}{18} a^{10} + \frac{2}{9} a^{9} + \frac{1}{6} a^{8} + \frac{4}{9} a^{7} - \frac{5}{36} a^{6} - \frac{1}{18} a^{5} + \frac{1}{36} a^{3} + \frac{11}{36} a^{2} + \frac{5}{12} a - \frac{1}{12}$, $\frac{1}{251470377359193845040473331324} a^{19} - \frac{203695788669220487389611917}{251470377359193845040473331324} a^{18} + \frac{513162942556244205361090591}{83823459119731281680157777108} a^{17} + \frac{1581062414271970754964114347}{83823459119731281680157777108} a^{16} + \frac{6354116833101181622261263273}{251470377359193845040473331324} a^{15} + \frac{15557543309880705535165934486}{62867594339798461260118332831} a^{14} - \frac{31007552580776458745468116873}{251470377359193845040473331324} a^{13} + \frac{3645121685093516451965839769}{41911729559865640840078888554} a^{12} - \frac{2282331524138359143850421587}{41911729559865640840078888554} a^{11} - \frac{3021119440504808091359264368}{6985288259977606806679814759} a^{10} + \frac{59399491431170971296189632929}{125735188679596922520236665662} a^{9} + \frac{16277819880604829360010086992}{62867594339798461260118332831} a^{8} - \frac{113955133063184959425320469139}{251470377359193845040473331324} a^{7} + \frac{32879902039140020356334139305}{251470377359193845040473331324} a^{6} - \frac{55819528875944270342944788221}{251470377359193845040473331324} a^{5} - \frac{122021260301043177696548865743}{251470377359193845040473331324} a^{4} + \frac{3259864244158591166632236883}{83823459119731281680157777108} a^{3} - \frac{55237035643549478675353828859}{125735188679596922520236665662} a^{2} - \frac{22469684789864178389619823085}{83823459119731281680157777108} a + \frac{13237671637159612608703994395}{41911729559865640840078888554}$
Class group and class number
Trivial group, which has order $1$ (assuming GRH)
Unit group
| Rank: | $11$ | magma: UnitRank(K);
sage: UK.rank()
gp: K.fu
| |
| Torsion generator: | \( -1 \) (order $2$) | magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
sage: UK.torsion_generator()
gp: K.tu[2]
| |
| Fundamental units: | Units are too long to display, but can be downloaded with other data for this field from 'Stored data to gp' link to the right (assuming GRH) | magma: [K!f(g): g in Generators(UK)];
sage: UK.fundamental_units()
gp: K.fu
| |
| Regulator: | \( 7468484.48337 \) (assuming GRH) | magma: Regulator(K);
sage: K.regulator()
gp: K.reg
|
Galois group
| A non-solvable group of order 30720 |
| The 84 conjugacy class representatives for t20n561 are not computed |
| Character table for t20n561 is not computed |
Intermediate fields
| 5.5.3104644.1, 10.4.28916443100208.1, 10.4.260247987901872.1, 10.6.86749329300624.2 |
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Sibling fields
Frobenius cycle types
| $p$ | 2 | 3 | 5 | 7 | 11 | 13 | 17 | 19 | 23 | 29 | 31 | 37 | 41 | 43 | 47 | 53 | 59 |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Cycle type | R | R | ${\href{/LocalNumberField/5.10.0.1}{10} }^{2}$ | ${\href{/LocalNumberField/7.5.0.1}{5} }^{4}$ | ${\href{/LocalNumberField/11.10.0.1}{10} }^{2}$ | ${\href{/LocalNumberField/13.5.0.1}{5} }^{4}$ | ${\href{/LocalNumberField/17.3.0.1}{3} }^{4}{,}\,{\href{/LocalNumberField/17.2.0.1}{2} }^{2}{,}\,{\href{/LocalNumberField/17.1.0.1}{1} }^{4}$ | ${\href{/LocalNumberField/19.5.0.1}{5} }^{4}$ | ${\href{/LocalNumberField/23.10.0.1}{10} }^{2}$ | ${\href{/LocalNumberField/29.6.0.1}{6} }^{2}{,}\,{\href{/LocalNumberField/29.2.0.1}{2} }^{2}{,}\,{\href{/LocalNumberField/29.1.0.1}{1} }^{4}$ | ${\href{/LocalNumberField/31.4.0.1}{4} }^{2}{,}\,{\href{/LocalNumberField/31.2.0.1}{2} }^{6}$ | ${\href{/LocalNumberField/37.4.0.1}{4} }^{4}{,}\,{\href{/LocalNumberField/37.2.0.1}{2} }^{2}$ | ${\href{/LocalNumberField/41.10.0.1}{10} }^{2}$ | ${\href{/LocalNumberField/43.5.0.1}{5} }^{4}$ | ${\href{/LocalNumberField/47.6.0.1}{6} }^{2}{,}\,{\href{/LocalNumberField/47.2.0.1}{2} }^{4}$ | ${\href{/LocalNumberField/53.10.0.1}{10} }^{2}$ | ${\href{/LocalNumberField/59.10.0.1}{10} }^{2}$ |
In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
| $p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
|---|---|---|---|---|---|---|---|
| $2$ | 2.4.0.1 | $x^{4} - x + 1$ | $1$ | $4$ | $0$ | $C_4$ | $[\ ]^{4}$ |
| 2.4.0.1 | $x^{4} - x + 1$ | $1$ | $4$ | $0$ | $C_4$ | $[\ ]^{4}$ | |
| 2.6.4.1 | $x^{6} + 3 x^{5} + 6 x^{4} + 3 x^{3} + 9 x + 9$ | $3$ | $2$ | $4$ | $S_3$ | $[\ ]_{3}^{2}$ | |
| 2.6.4.1 | $x^{6} + 3 x^{5} + 6 x^{4} + 3 x^{3} + 9 x + 9$ | $3$ | $2$ | $4$ | $S_3$ | $[\ ]_{3}^{2}$ | |
| $3$ | 3.4.2.1 | $x^{4} + 9 x^{2} + 36$ | $2$ | $2$ | $2$ | $C_2^2$ | $[\ ]_{2}^{2}$ |
| 3.4.0.1 | $x^{4} - x + 2$ | $1$ | $4$ | $0$ | $C_4$ | $[\ ]^{4}$ | |
| 3.4.2.2 | $x^{4} - 3 x^{2} + 18$ | $2$ | $2$ | $2$ | $C_4$ | $[\ ]_{2}^{2}$ | |
| 3.4.0.1 | $x^{4} - x + 2$ | $1$ | $4$ | $0$ | $C_4$ | $[\ ]^{4}$ | |
| 3.4.2.2 | $x^{4} - 3 x^{2} + 18$ | $2$ | $2$ | $2$ | $C_4$ | $[\ ]_{2}^{2}$ | |
| 881 | Data not computed | ||||||