Normalized defining polynomial
\( x^{20} - 6 x^{19} + 8 x^{18} - 15 x^{17} + 49 x^{16} - 26 x^{15} - 374 x^{14} + 774 x^{13} + 3353 x^{12} + 8269 x^{11} + 714 x^{10} - 46770 x^{9} - 121638 x^{8} - 182475 x^{7} - 190983 x^{6} - 119310 x^{5} - 26897 x^{4} + 7860 x^{3} + 6695 x^{2} + 6057 x + 2511 \)
Invariants
| Degree: | $20$ | magma: Degree(K);
sage: K.degree()
gp: poldegree(K.pol)
| |
| Signature: | $[4, 8]$ | magma: Signature(K);
sage: K.signature()
gp: K.sign
| |
| Discriminant: | \(6746013288644684230256202939216517=13^{7}\cdot 401^{10}\) | magma: Discriminant(Integers(K));
sage: K.disc()
gp: K.disc
| |
| Root discriminant: | $49.14$ | magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
sage: (K.disc().abs())^(1./K.degree())
gp: abs(K.disc)^(1/poldegree(K.pol))
| |
| Ramified primes: | $13, 401$ | magma: PrimeDivisors(Discriminant(Integers(K)));
sage: K.disc().support()
gp: factor(abs(K.disc))[,1]~
| |
| This field is not Galois over $\Q$. | |||
| This is not a CM field. | |||
Integral basis (with respect to field generator \(a\))
$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $a^{6}$, $a^{7}$, $a^{8}$, $a^{9}$, $a^{10}$, $a^{11}$, $a^{12}$, $a^{13}$, $a^{14}$, $a^{15}$, $a^{16}$, $a^{17}$, $\frac{1}{1209} a^{18} + \frac{355}{1209} a^{17} + \frac{161}{403} a^{16} + \frac{157}{403} a^{15} + \frac{4}{93} a^{14} + \frac{200}{1209} a^{13} - \frac{82}{403} a^{12} - \frac{162}{403} a^{11} + \frac{254}{1209} a^{10} + \frac{57}{403} a^{9} + \frac{94}{403} a^{8} - \frac{177}{403} a^{7} + \frac{160}{403} a^{6} + \frac{85}{403} a^{5} + \frac{146}{403} a^{4} + \frac{30}{403} a^{3} + \frac{421}{1209} a^{2} + \frac{46}{93} a + \frac{2}{13}$, $\frac{1}{3604054512144222178388436129438596765892185277} a^{19} - \frac{151908318694662224023837657226590540380410}{400450501349358019820937347715399640654687253} a^{18} + \frac{1260547064471690918871274802560261532916027416}{3604054512144222178388436129438596765892185277} a^{17} - \frac{419903058772832969444756701896063827891383613}{1201351504048074059462812043146198921964061759} a^{16} + \frac{925060956742919732783663565542002286752326265}{3604054512144222178388436129438596765892185277} a^{15} + \frac{1455525554317517197218424913305526293628551900}{3604054512144222178388436129438596765892185277} a^{14} + \frac{1656623933158895292585768936539673267585355174}{3604054512144222178388436129438596765892185277} a^{13} - \frac{113869055936975666803520974214039089371524715}{400450501349358019820937347715399640654687253} a^{12} - \frac{1601982716586134077689321406339998117480486037}{3604054512144222178388436129438596765892185277} a^{11} + \frac{1657003950154610223818952995546544418143963997}{3604054512144222178388436129438596765892185277} a^{10} - \frac{26643493991905958557934128529829724306407899}{63229026528846003129621686481378890629687461} a^{9} - \frac{329513427317277124950970557847789487194652282}{1201351504048074059462812043146198921964061759} a^{8} + \frac{291423433035594463793120937090386227449712364}{1201351504048074059462812043146198921964061759} a^{7} + \frac{1700578106403491450910241690018791408114282}{21076342176282001043207228827126296876562487} a^{6} + \frac{90582533423471180230882183254165732253163951}{1201351504048074059462812043146198921964061759} a^{5} + \frac{10737511046928446441425501648814278406129170}{92411654157544158420216311011246070920312443} a^{4} + \frac{44921423195295416865862848477917501078305990}{116259822972394263818981810627051508577167267} a^{3} - \frac{492828798393262493463655806599655461805391}{400450501349358019820937347715399640654687253} a^{2} + \frac{340455596243456736778100707377753256931169236}{3604054512144222178388436129438596765892185277} a + \frac{3868509274307870361929179801720864998280628}{12917758108043807090997978958561278730796363}$
Class group and class number
Trivial group, which has order $1$ (assuming GRH)
Unit group
| Rank: | $11$ | magma: UnitRank(K);
sage: UK.rank()
gp: K.fu
| |
| Torsion generator: | \( -1 \) (order $2$) | magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
sage: UK.torsion_generator()
gp: K.tu[2]
| |
| Fundamental units: | Units are too long to display, but can be downloaded with other data for this field from 'Stored data to gp' link to the right (assuming GRH) | magma: [K!f(g): g in Generators(UK)];
sage: UK.fundamental_units()
gp: K.fu
| |
| Regulator: | \( 1328430870.69 \) (assuming GRH) | magma: Regulator(K);
sage: K.regulator()
gp: K.reg
|
Galois group
| A solvable group of order 10240 |
| The 76 conjugacy class representatives for t20n436 are not computed |
| Character table for t20n436 is not computed |
Intermediate fields
| 5.5.160801.1, 10.6.56807744637397.1 |
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Sibling fields
Frobenius cycle types
| $p$ | 2 | 3 | 5 | 7 | 11 | 13 | 17 | 19 | 23 | 29 | 31 | 37 | 41 | 43 | 47 | 53 | 59 |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Cycle type | $20$ | ${\href{/LocalNumberField/3.8.0.1}{8} }{,}\,{\href{/LocalNumberField/3.4.0.1}{4} }{,}\,{\href{/LocalNumberField/3.2.0.1}{2} }^{4}$ | $20$ | $20$ | $20$ | R | ${\href{/LocalNumberField/17.8.0.1}{8} }{,}\,{\href{/LocalNumberField/17.4.0.1}{4} }^{2}{,}\,{\href{/LocalNumberField/17.2.0.1}{2} }{,}\,{\href{/LocalNumberField/17.1.0.1}{1} }^{2}$ | ${\href{/LocalNumberField/19.4.0.1}{4} }{,}\,{\href{/LocalNumberField/19.2.0.1}{2} }^{8}$ | ${\href{/LocalNumberField/23.4.0.1}{4} }^{4}{,}\,{\href{/LocalNumberField/23.2.0.1}{2} }^{2}$ | ${\href{/LocalNumberField/29.5.0.1}{5} }^{4}$ | ${\href{/LocalNumberField/31.4.0.1}{4} }^{3}{,}\,{\href{/LocalNumberField/31.2.0.1}{2} }^{2}{,}\,{\href{/LocalNumberField/31.1.0.1}{1} }^{4}$ | ${\href{/LocalNumberField/37.4.0.1}{4} }^{3}{,}\,{\href{/LocalNumberField/37.2.0.1}{2} }^{4}$ | $20$ | ${\href{/LocalNumberField/43.10.0.1}{10} }^{2}$ | $20$ | ${\href{/LocalNumberField/53.4.0.1}{4} }^{4}{,}\,{\href{/LocalNumberField/53.2.0.1}{2} }^{2}$ | ${\href{/LocalNumberField/59.8.0.1}{8} }{,}\,{\href{/LocalNumberField/59.4.0.1}{4} }{,}\,{\href{/LocalNumberField/59.2.0.1}{2} }^{3}{,}\,{\href{/LocalNumberField/59.1.0.1}{1} }^{2}$ |
In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
| $p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
|---|---|---|---|---|---|---|---|
| $13$ | 13.2.0.1 | $x^{2} - x + 2$ | $1$ | $2$ | $0$ | $C_2$ | $[\ ]^{2}$ |
| 13.2.0.1 | $x^{2} - x + 2$ | $1$ | $2$ | $0$ | $C_2$ | $[\ ]^{2}$ | |
| 13.2.0.1 | $x^{2} - x + 2$ | $1$ | $2$ | $0$ | $C_2$ | $[\ ]^{2}$ | |
| 13.2.0.1 | $x^{2} - x + 2$ | $1$ | $2$ | $0$ | $C_2$ | $[\ ]^{2}$ | |
| 13.4.2.1 | $x^{4} + 39 x^{2} + 676$ | $2$ | $2$ | $2$ | $C_2^2$ | $[\ ]_{2}^{2}$ | |
| 13.4.3.1 | $x^{4} - 13$ | $4$ | $1$ | $3$ | $C_4$ | $[\ ]_{4}$ | |
| 13.4.2.1 | $x^{4} + 39 x^{2} + 676$ | $2$ | $2$ | $2$ | $C_2^2$ | $[\ ]_{2}^{2}$ | |
| 401 | Data not computed | ||||||