Normalized defining polynomial
\( x^{20} - 5 x^{19} + 19 x^{18} - 58 x^{17} + 148 x^{16} - 318 x^{15} + 647 x^{14} - 1126 x^{13} + 1809 x^{12} - 2856 x^{11} + 3545 x^{10} - 4617 x^{9} + 5447 x^{8} - 4421 x^{7} + 4166 x^{6} - 3071 x^{5} + 1627 x^{4} - 495 x^{3} + 144 x^{2} + 192 x + 23 \)
Invariants
| Degree: | $20$ | magma: Degree(K);
sage: K.degree()
gp: poldegree(K.pol)
| |
| Signature: | $[4, 8]$ | magma: Signature(K);
sage: K.signature()
gp: K.sign
| |
| Discriminant: | \(66311033145747514657031168=2^{10}\cdot 36497^{5}\) | magma: Discriminant(Integers(K));
sage: K.disc()
gp: K.disc
| |
| Root discriminant: | $19.55$ | magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
sage: (K.disc().abs())^(1./K.degree())
gp: abs(K.disc)^(1/poldegree(K.pol))
| |
| Ramified primes: | $2, 36497$ | magma: PrimeDivisors(Discriminant(Integers(K)));
sage: K.disc().support()
gp: factor(abs(K.disc))[,1]~
| |
| This field is not Galois over $\Q$. | |||
| This is not a CM field. | |||
Integral basis (with respect to field generator \(a\))
$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $a^{6}$, $a^{7}$, $a^{8}$, $a^{9}$, $a^{10}$, $a^{11}$, $a^{12}$, $a^{13}$, $a^{14}$, $a^{15}$, $a^{16}$, $a^{17}$, $\frac{1}{7} a^{18} + \frac{2}{7} a^{17} + \frac{3}{7} a^{16} + \frac{1}{7} a^{15} + \frac{2}{7} a^{14} + \frac{2}{7} a^{13} - \frac{1}{7} a^{12} - \frac{3}{7} a^{11} - \frac{2}{7} a^{10} - \frac{1}{7} a^{9} - \frac{2}{7} a^{7} + \frac{1}{7} a^{6} - \frac{1}{7} a^{4} + \frac{2}{7} a^{3} - \frac{2}{7} a^{2} - \frac{2}{7} a + \frac{1}{7}$, $\frac{1}{168721360962392781488290410541161} a^{19} + \frac{10944709675120132274608604122475}{168721360962392781488290410541161} a^{18} - \frac{11649350205138547919249472993757}{56240453654130927162763470180387} a^{17} - \frac{3649334428997283853769997461614}{168721360962392781488290410541161} a^{16} - \frac{5816790157920483537232271646554}{18746817884710309054254490060129} a^{15} - \frac{4644669051541384302246549968125}{56240453654130927162763470180387} a^{14} + \frac{37741903079860800926287758738419}{168721360962392781488290410541161} a^{13} + \frac{81719426246845104615131707870195}{168721360962392781488290410541161} a^{12} - \frac{30213535058642113641701656505798}{168721360962392781488290410541161} a^{11} + \frac{4168512998142729336290726794801}{24103051566056111641184344363023} a^{10} + \frac{10781656999314417499358224253866}{56240453654130927162763470180387} a^{9} - \frac{12394447929306371451414819359309}{56240453654130927162763470180387} a^{8} - \frac{61391519907252076426896190133743}{168721360962392781488290410541161} a^{7} + \frac{18152356997312840734203245114075}{56240453654130927162763470180387} a^{6} - \frac{14697823107858936889911615632974}{168721360962392781488290410541161} a^{5} - \frac{7427616408067905915215493272155}{56240453654130927162763470180387} a^{4} + \frac{70306156958057612766689146069036}{168721360962392781488290410541161} a^{3} + \frac{61386406102258665439520797603111}{168721360962392781488290410541161} a^{2} - \frac{53358847029354474215428509270209}{168721360962392781488290410541161} a + \frac{74825228924153251973944944075853}{168721360962392781488290410541161}$
Class group and class number
Trivial group, which has order $1$ (assuming GRH)
Unit group
| Rank: | $11$ | magma: UnitRank(K);
sage: UK.rank()
gp: K.fu
| |
| Torsion generator: | \( -1 \) (order $2$) | magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
sage: UK.torsion_generator()
gp: K.tu[2]
| |
| Fundamental units: | Units are too long to display, but can be downloaded with other data for this field from 'Stored data to gp' link to the right (assuming GRH) | magma: [K!f(g): g in Generators(UK)];
sage: UK.fundamental_units()
gp: K.fu
| |
| Regulator: | \( 91934.5306674 \) (assuming GRH) | magma: Regulator(K);
sage: K.regulator()
gp: K.reg
|
Galois group
| A non-solvable group of order 983040 |
| The 149 conjugacy class representatives for t20n965 are not computed |
| Character table for t20n965 is not computed |
Intermediate fields
| 5.5.36497.1, 10.2.1332031009.1 |
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Sibling fields
Frobenius cycle types
| $p$ | 2 | 3 | 5 | 7 | 11 | 13 | 17 | 19 | 23 | 29 | 31 | 37 | 41 | 43 | 47 | 53 | 59 |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Cycle type | R | $16{,}\,{\href{/LocalNumberField/3.2.0.1}{2} }^{2}$ | ${\href{/LocalNumberField/5.12.0.1}{12} }{,}\,{\href{/LocalNumberField/5.4.0.1}{4} }^{2}$ | ${\href{/LocalNumberField/7.12.0.1}{12} }{,}\,{\href{/LocalNumberField/7.4.0.1}{4} }^{2}$ | ${\href{/LocalNumberField/11.4.0.1}{4} }{,}\,{\href{/LocalNumberField/11.3.0.1}{3} }^{4}{,}\,{\href{/LocalNumberField/11.2.0.1}{2} }^{2}$ | ${\href{/LocalNumberField/13.8.0.1}{8} }^{2}{,}\,{\href{/LocalNumberField/13.4.0.1}{4} }$ | ${\href{/LocalNumberField/17.5.0.1}{5} }^{4}$ | ${\href{/LocalNumberField/19.10.0.1}{10} }^{2}$ | ${\href{/LocalNumberField/23.4.0.1}{4} }^{4}{,}\,{\href{/LocalNumberField/23.2.0.1}{2} }{,}\,{\href{/LocalNumberField/23.1.0.1}{1} }^{2}$ | $16{,}\,{\href{/LocalNumberField/29.2.0.1}{2} }^{2}$ | ${\href{/LocalNumberField/31.4.0.1}{4} }^{4}{,}\,{\href{/LocalNumberField/31.2.0.1}{2} }^{2}$ | ${\href{/LocalNumberField/37.8.0.1}{8} }^{2}{,}\,{\href{/LocalNumberField/37.4.0.1}{4} }$ | ${\href{/LocalNumberField/41.12.0.1}{12} }{,}\,{\href{/LocalNumberField/41.4.0.1}{4} }^{2}$ | ${\href{/LocalNumberField/43.12.0.1}{12} }{,}\,{\href{/LocalNumberField/43.4.0.1}{4} }^{2}$ | ${\href{/LocalNumberField/47.12.0.1}{12} }{,}\,{\href{/LocalNumberField/47.2.0.1}{2} }^{3}{,}\,{\href{/LocalNumberField/47.1.0.1}{1} }^{2}$ | $16{,}\,{\href{/LocalNumberField/53.2.0.1}{2} }^{2}$ | ${\href{/LocalNumberField/59.4.0.1}{4} }{,}\,{\href{/LocalNumberField/59.2.0.1}{2} }^{7}{,}\,{\href{/LocalNumberField/59.1.0.1}{1} }^{2}$ |
In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
| $p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
|---|---|---|---|---|---|---|---|
| $2$ | 2.10.10.5 | $x^{10} - 9 x^{8} + 50 x^{6} - 50 x^{4} + 45 x^{2} - 5$ | $2$ | $5$ | $10$ | $C_2 \times (C_2^4 : C_5)$ | $[2, 2, 2, 2]^{10}$ |
| 2.10.0.1 | $x^{10} - x^{3} + 1$ | $1$ | $10$ | $0$ | $C_{10}$ | $[\ ]^{10}$ | |
| 36497 | Data not computed | ||||||