Normalized defining polynomial
\( x^{20} - 120 x^{18} + 6035 x^{16} - 480 x^{15} - 164640 x^{14} - 28800 x^{13} + 2639530 x^{12} - 357600 x^{11} - 25260624 x^{10} - 86400 x^{9} + 157270150 x^{8} + 289192800 x^{7} + 20076000 x^{6} - 4560186240 x^{5} + 3385257125 x^{4} + 18578652000 x^{3} + 18457557000 x^{2} + 27753840000 x - 64435301225 \)
Invariants
| Degree: | $20$ | magma: Degree(K);
sage: K.degree()
gp: poldegree(K.pol)
| |
| Signature: | $[4, 8]$ | magma: Signature(K);
sage: K.signature()
gp: K.sign
| |
| Discriminant: | \(65971085909696290318640396673392028808593750000000000000000000000=2^{22}\cdot 3^{16}\cdot 5^{37}\cdot 11^{5}\cdot 89^{10}\) | magma: Discriminant(Integers(K));
sage: K.disc()
gp: K.disc
| |
| Root discriminant: | $1741.68$ | magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
sage: (K.disc().abs())^(1./K.degree())
gp: abs(K.disc)^(1/poldegree(K.pol))
| |
| Ramified primes: | $2, 3, 5, 11, 89$ | magma: PrimeDivisors(Discriminant(Integers(K)));
sage: K.disc().support()
gp: factor(abs(K.disc))[,1]~
| |
| This field is not Galois over $\Q$. | |||
| This is not a CM field. | |||
Integral basis (with respect to field generator \(a\))
$1$, $a$, $\frac{1}{2} a^{2} - \frac{1}{2}$, $\frac{1}{2} a^{3} - \frac{1}{2} a$, $\frac{1}{4} a^{4} - \frac{1}{4}$, $\frac{1}{4} a^{5} - \frac{1}{4} a$, $\frac{1}{8} a^{6} - \frac{1}{8} a^{4} - \frac{1}{8} a^{2} + \frac{1}{8}$, $\frac{1}{8} a^{7} - \frac{1}{8} a^{5} - \frac{1}{8} a^{3} + \frac{1}{8} a$, $\frac{1}{16} a^{8} - \frac{1}{8} a^{4} + \frac{1}{16}$, $\frac{1}{16} a^{9} - \frac{1}{8} a^{5} + \frac{1}{16} a$, $\frac{1}{32} a^{10} - \frac{1}{32} a^{8} - \frac{1}{16} a^{6} + \frac{1}{16} a^{4} + \frac{1}{32} a^{2} - \frac{1}{32}$, $\frac{1}{64} a^{11} - \frac{1}{64} a^{10} + \frac{1}{64} a^{9} - \frac{1}{64} a^{8} - \frac{1}{32} a^{7} + \frac{1}{32} a^{6} - \frac{1}{32} a^{5} + \frac{1}{32} a^{4} + \frac{1}{64} a^{3} - \frac{1}{64} a^{2} + \frac{1}{64} a - \frac{1}{64}$, $\frac{1}{64} a^{12} + \frac{1}{64} a^{8} - \frac{5}{64} a^{4} + \frac{3}{64}$, $\frac{1}{128} a^{13} - \frac{1}{128} a^{12} - \frac{3}{128} a^{9} + \frac{3}{128} a^{8} + \frac{3}{128} a^{5} - \frac{3}{128} a^{4} - \frac{1}{128} a + \frac{1}{128}$, $\frac{1}{128} a^{14} - \frac{1}{128} a^{12} + \frac{1}{128} a^{10} - \frac{1}{128} a^{8} - \frac{5}{128} a^{6} + \frac{5}{128} a^{4} + \frac{3}{128} a^{2} - \frac{3}{128}$, $\frac{1}{6400} a^{15} - \frac{1}{256} a^{14} + \frac{1}{1280} a^{13} - \frac{1}{256} a^{12} - \frac{3}{1280} a^{11} + \frac{3}{1280} a^{10} + \frac{17}{1280} a^{9} + \frac{7}{256} a^{8} + \frac{31}{1280} a^{7} - \frac{11}{256} a^{6} - \frac{249}{6400} a^{5} - \frac{11}{256} a^{4} - \frac{21}{256} a^{3} + \frac{37}{256} a^{2} - \frac{9}{256} a - \frac{359}{1280}$, $\frac{1}{12800} a^{16} + \frac{3}{1280} a^{14} + \frac{1}{1280} a^{12} + \frac{1}{320} a^{11} + \frac{11}{1280} a^{10} + \frac{1}{64} a^{9} - \frac{11}{640} a^{8} + \frac{1}{32} a^{7} + \frac{213}{6400} a^{6} + \frac{1}{32} a^{5} + \frac{19}{256} a^{4} + \frac{1}{64} a^{3} - \frac{19}{256} a^{2} - \frac{63}{320} a - \frac{45}{512}$, $\frac{1}{1011200} a^{17} - \frac{3}{1011200} a^{16} + \frac{11}{505600} a^{15} - \frac{349}{101120} a^{14} - \frac{183}{101120} a^{13} + \frac{201}{101120} a^{12} + \frac{591}{101120} a^{11} - \frac{209}{20224} a^{10} + \frac{121}{10112} a^{9} + \frac{1423}{50560} a^{8} + \frac{25193}{505600} a^{7} - \frac{8539}{505600} a^{6} + \frac{5971}{505600} a^{5} + \frac{2411}{20224} a^{4} - \frac{2519}{20224} a^{3} - \frac{5807}{101120} a^{2} - \frac{83393}{202240} a - \frac{97173}{202240}$, $\frac{1}{259078582082547753500185600} a^{18} - \frac{8237158761990384269}{129539291041273876750092800} a^{17} + \frac{991454414252599451857}{51815716416509550700037120} a^{16} - \frac{3606611365166170768189}{64769645520636938375046400} a^{15} - \frac{16423573579220817648487}{12953929104127387675009280} a^{14} - \frac{16140132643265192551951}{12953929104127387675009280} a^{13} + \frac{78023689330105377365997}{12953929104127387675009280} a^{12} + \frac{79428171348034071151943}{12953929104127387675009280} a^{11} - \frac{333691954118479333389221}{25907858208254775350018560} a^{10} - \frac{15191648870186189086593}{647696455206369383750464} a^{9} - \frac{1682537019657481773977437}{129539291041273876750092800} a^{8} - \frac{4045149965217042500613967}{64769645520636938375046400} a^{7} - \frac{169099813078628209598451}{12953929104127387675009280} a^{6} + \frac{1093257671213992250161571}{64769645520636938375046400} a^{5} + \frac{270423039550745854010573}{2590785820825477535001856} a^{4} + \frac{2565629413308537387275669}{12953929104127387675009280} a^{3} - \frac{6699117193652395875387163}{51815716416509550700037120} a^{2} + \frac{5013688163180592584801}{19262348110226598773248} a + \frac{17692997680555780966236009}{51815716416509550700037120}$, $\frac{1}{18143424205294018364374208633029121034112000} a^{19} + \frac{366538055931093}{1814342420529401836437420863302912103411200} a^{18} + \frac{227440135985797840781992994647398129}{725736968211760734574968345321164841364480} a^{17} + \frac{1398892128801057262524067993371564193}{45358560513235045910935521582572802585280} a^{16} - \frac{54774407024760013928499165000512155193}{907171210264700918218710431651456051705600} a^{15} - \frac{2996940405574010422658760691324694696303}{907171210264700918218710431651456051705600} a^{14} - \frac{2739744127050661300728721569506111583317}{907171210264700918218710431651456051705600} a^{13} - \frac{471674090016952147210355066220892652821}{181434242052940183643742086330291210341120} a^{12} + \frac{3874374123766849139336675608321726174903}{1814342420529401836437420863302912103411200} a^{11} + \frac{1000927574240771781729613006614622044381}{90717121026470091821871043165145605170560} a^{10} - \frac{116411778249368625718613703880122433165837}{9071712102647009182187104316514560517056000} a^{9} + \frac{27778651889691993654683360246797207364399}{907171210264700918218710431651456051705600} a^{8} - \frac{42042984043085422753271787379039585673049}{907171210264700918218710431651456051705600} a^{7} - \frac{9743670552500482894450149368576249200493}{181434242052940183643742086330291210341120} a^{6} - \frac{31825826135525676216095378062444110270381}{907171210264700918218710431651456051705600} a^{5} + \frac{34265193269463335890058172346625935148269}{907171210264700918218710431651456051705600} a^{4} + \frac{127606044224467639719960894295332660846441}{725736968211760734574968345321164841364480} a^{3} - \frac{26529055952906359323842924689915313580773}{362868484105880367287484172660582420682240} a^{2} + \frac{34735531388610101002039808359171461014765}{145147393642352146914993669064232968272896} a + \frac{60303126196722445514768888535197391299429}{181434242052940183643742086330291210341120}$
Class group and class number
Not computed
Unit group
| Rank: | $11$ | magma: UnitRank(K);
sage: UK.rank()
gp: K.fu
| |
| Torsion generator: | \( -1 \) (order $2$) | magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
sage: UK.torsion_generator()
gp: K.tu[2]
| |
| Fundamental units: | Not computed | magma: [K!f(g): g in Generators(UK)];
sage: UK.fundamental_units()
gp: K.fu
| |
| Regulator: | Not computed | magma: Regulator(K);
sage: K.regulator()
gp: K.reg
|
Galois group
$D_4\times F_5$ (as 20T42):
| A solvable group of order 160 |
| The 25 conjugacy class representatives for $D_4\times F_5$ |
| Character table for $D_4\times F_5$ is not computed |
Intermediate fields
| \(\Q(\sqrt{89}) \), 4.4.1742620.2, 5.1.2531250000.22, 10.2.35778334028211914062500000000.1 |
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Sibling fields
Frobenius cycle types
| $p$ | 2 | 3 | 5 | 7 | 11 | 13 | 17 | 19 | 23 | 29 | 31 | 37 | 41 | 43 | 47 | 53 | 59 |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Cycle type | R | R | R | ${\href{/LocalNumberField/7.4.0.1}{4} }^{5}$ | R | ${\href{/LocalNumberField/13.4.0.1}{4} }^{4}{,}\,{\href{/LocalNumberField/13.2.0.1}{2} }^{2}$ | ${\href{/LocalNumberField/17.4.0.1}{4} }^{4}{,}\,{\href{/LocalNumberField/17.2.0.1}{2} }^{2}$ | ${\href{/LocalNumberField/19.2.0.1}{2} }^{10}$ | ${\href{/LocalNumberField/23.4.0.1}{4} }^{4}{,}\,{\href{/LocalNumberField/23.2.0.1}{2} }^{2}$ | ${\href{/LocalNumberField/29.4.0.1}{4} }^{5}$ | $20$ | ${\href{/LocalNumberField/37.4.0.1}{4} }^{5}$ | ${\href{/LocalNumberField/41.4.0.1}{4} }^{5}$ | ${\href{/LocalNumberField/43.4.0.1}{4} }^{5}$ | ${\href{/LocalNumberField/47.4.0.1}{4} }^{4}{,}\,{\href{/LocalNumberField/47.2.0.1}{2} }^{2}$ | ${\href{/LocalNumberField/53.4.0.1}{4} }^{4}{,}\,{\href{/LocalNumberField/53.2.0.1}{2} }{,}\,{\href{/LocalNumberField/53.1.0.1}{1} }^{2}$ | ${\href{/LocalNumberField/59.4.0.1}{4} }^{5}$ |
In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
| $p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
|---|---|---|---|---|---|---|---|
| $2$ | 2.5.4.1 | $x^{5} - 2$ | $5$ | $1$ | $4$ | $F_5$ | $[\ ]_{5}^{4}$ |
| 2.5.4.1 | $x^{5} - 2$ | $5$ | $1$ | $4$ | $F_5$ | $[\ ]_{5}^{4}$ | |
| 2.10.14.1 | $x^{10} - 2 x^{6} + 2 x^{5} + 2 x^{2} + 2$ | $10$ | $1$ | $14$ | $F_{5}\times C_2$ | $[2]_{5}^{4}$ | |
| $3$ | 3.10.8.1 | $x^{10} - 3 x^{5} + 18$ | $5$ | $2$ | $8$ | $F_5$ | $[\ ]_{5}^{4}$ |
| 3.10.8.1 | $x^{10} - 3 x^{5} + 18$ | $5$ | $2$ | $8$ | $F_5$ | $[\ ]_{5}^{4}$ | |
| $5$ | 5.5.9.1 | $x^{5} + 5$ | $5$ | $1$ | $9$ | $F_5$ | $[9/4]_{4}$ |
| 5.5.9.1 | $x^{5} + 5$ | $5$ | $1$ | $9$ | $F_5$ | $[9/4]_{4}$ | |
| 5.10.19.1 | $x^{10} + 5$ | $10$ | $1$ | $19$ | $F_5$ | $[9/4]_{4}$ | |
| $11$ | 11.2.0.1 | $x^{2} - x + 7$ | $1$ | $2$ | $0$ | $C_2$ | $[\ ]^{2}$ |
| 11.2.1.2 | $x^{2} + 33$ | $2$ | $1$ | $1$ | $C_2$ | $[\ ]_{2}$ | |
| 11.2.1.2 | $x^{2} + 33$ | $2$ | $1$ | $1$ | $C_2$ | $[\ ]_{2}$ | |
| 11.2.0.1 | $x^{2} - x + 7$ | $1$ | $2$ | $0$ | $C_2$ | $[\ ]^{2}$ | |
| 11.2.1.2 | $x^{2} + 33$ | $2$ | $1$ | $1$ | $C_2$ | $[\ ]_{2}$ | |
| 11.2.0.1 | $x^{2} - x + 7$ | $1$ | $2$ | $0$ | $C_2$ | $[\ ]^{2}$ | |
| 11.2.0.1 | $x^{2} - x + 7$ | $1$ | $2$ | $0$ | $C_2$ | $[\ ]^{2}$ | |
| 11.2.1.2 | $x^{2} + 33$ | $2$ | $1$ | $1$ | $C_2$ | $[\ ]_{2}$ | |
| 11.2.0.1 | $x^{2} - x + 7$ | $1$ | $2$ | $0$ | $C_2$ | $[\ ]^{2}$ | |
| 11.2.1.2 | $x^{2} + 33$ | $2$ | $1$ | $1$ | $C_2$ | $[\ ]_{2}$ | |
| $89$ | 89.4.2.1 | $x^{4} + 979 x^{2} + 285156$ | $2$ | $2$ | $2$ | $C_2^2$ | $[\ ]_{2}^{2}$ |
| 89.4.2.1 | $x^{4} + 979 x^{2} + 285156$ | $2$ | $2$ | $2$ | $C_2^2$ | $[\ ]_{2}^{2}$ | |
| 89.4.2.1 | $x^{4} + 979 x^{2} + 285156$ | $2$ | $2$ | $2$ | $C_2^2$ | $[\ ]_{2}^{2}$ | |
| 89.4.2.1 | $x^{4} + 979 x^{2} + 285156$ | $2$ | $2$ | $2$ | $C_2^2$ | $[\ ]_{2}^{2}$ | |
| 89.4.2.1 | $x^{4} + 979 x^{2} + 285156$ | $2$ | $2$ | $2$ | $C_2^2$ | $[\ ]_{2}^{2}$ |