Normalized defining polynomial
\( x^{20} - 7 x^{19} + 15 x^{18} + 7 x^{17} - 77 x^{16} + 100 x^{15} + 52 x^{14} - 307 x^{13} + 324 x^{12} + 167 x^{11} - 638 x^{10} + 200 x^{9} + 262 x^{8} + 102 x^{7} + 592 x^{6} - 351 x^{5} - 1101 x^{4} - 346 x^{3} + 187 x^{2} + 83 x - 1 \)
Invariants
| Degree: | $20$ | magma: Degree(K);
sage: K.degree()
gp: poldegree(K.pol)
| |
| Signature: | $[4, 8]$ | magma: Signature(K);
sage: K.signature()
gp: K.sign
| |
| Discriminant: | \(658618684118710741619590144=2^{10}\cdot 11^{16}\cdot 241^{3}\) | magma: Discriminant(Integers(K));
sage: K.disc()
gp: K.disc
| |
| Root discriminant: | $21.92$ | magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
sage: (K.disc().abs())^(1./K.degree())
gp: abs(K.disc)^(1/poldegree(K.pol))
| |
| Ramified primes: | $2, 11, 241$ | magma: PrimeDivisors(Discriminant(Integers(K)));
sage: K.disc().support()
gp: factor(abs(K.disc))[,1]~
| |
| This field is not Galois over $\Q$. | |||
| This is not a CM field. | |||
Integral basis (with respect to field generator \(a\))
$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $a^{6}$, $a^{7}$, $a^{8}$, $a^{9}$, $a^{10}$, $a^{11}$, $\frac{1}{2} a^{12} - \frac{1}{2} a^{11} - \frac{1}{2} a^{10} - \frac{1}{2} a^{9} - \frac{1}{2} a^{8} - \frac{1}{2} a^{5} - \frac{1}{2} a^{4} - \frac{1}{2} a^{2} - \frac{1}{2} a - \frac{1}{2}$, $\frac{1}{2} a^{13} - \frac{1}{2} a^{8} - \frac{1}{2} a^{6} - \frac{1}{2} a^{4} - \frac{1}{2} a^{3} - \frac{1}{2}$, $\frac{1}{4} a^{14} - \frac{1}{4} a^{13} + \frac{1}{4} a^{9} + \frac{1}{4} a^{8} + \frac{1}{4} a^{7} + \frac{1}{4} a^{6} + \frac{1}{4} a^{5} - \frac{1}{2} a^{4} - \frac{1}{4} a^{3} - \frac{1}{2} a^{2} - \frac{1}{4} a + \frac{1}{4}$, $\frac{1}{4} a^{15} - \frac{1}{4} a^{13} + \frac{1}{4} a^{10} - \frac{1}{2} a^{9} - \frac{1}{2} a^{8} - \frac{1}{2} a^{7} - \frac{1}{2} a^{6} - \frac{1}{4} a^{5} + \frac{1}{4} a^{4} + \frac{1}{4} a^{3} + \frac{1}{4} a^{2} + \frac{1}{4}$, $\frac{1}{8} a^{16} - \frac{1}{8} a^{15} - \frac{1}{8} a^{14} + \frac{1}{8} a^{13} + \frac{1}{8} a^{11} - \frac{3}{8} a^{10} - \frac{1}{2} a^{9} + \frac{1}{8} a^{6} + \frac{1}{4} a^{5} - \frac{1}{8} a^{2} + \frac{1}{8} a + \frac{3}{8}$, $\frac{1}{8} a^{17} - \frac{1}{8} a^{13} + \frac{1}{8} a^{12} - \frac{1}{4} a^{11} + \frac{3}{8} a^{10} - \frac{1}{2} a^{8} - \frac{3}{8} a^{7} - \frac{1}{8} a^{6} + \frac{1}{4} a^{4} + \frac{1}{8} a^{3} + \frac{1}{4} a^{2} - \frac{1}{2} a - \frac{3}{8}$, $\frac{1}{16} a^{18} - \frac{1}{16} a^{17} - \frac{1}{16} a^{14} + \frac{1}{8} a^{13} - \frac{3}{16} a^{12} + \frac{5}{16} a^{11} - \frac{3}{16} a^{10} + \frac{1}{4} a^{9} + \frac{1}{16} a^{8} - \frac{3}{8} a^{7} - \frac{7}{16} a^{6} + \frac{1}{8} a^{5} + \frac{7}{16} a^{4} + \frac{1}{16} a^{3} - \frac{3}{8} a^{2} - \frac{7}{16} a - \frac{5}{16}$, $\frac{1}{7624292183605613104} a^{19} + \frac{43871747780442639}{1906073045901403276} a^{18} + \frac{322043306587557545}{7624292183605613104} a^{17} - \frac{9080967348053750}{476518261475350819} a^{16} - \frac{223267256050593157}{7624292183605613104} a^{15} + \frac{658985029868448941}{7624292183605613104} a^{14} + \frac{1660184845553697845}{7624292183605613104} a^{13} - \frac{228156372527312183}{1906073045901403276} a^{12} + \frac{1561094895356751753}{3812146091802806552} a^{11} + \frac{1204020636450019259}{7624292183605613104} a^{10} - \frac{2088943308355256715}{7624292183605613104} a^{9} - \frac{89922862156495593}{7624292183605613104} a^{8} - \frac{5566622295797297}{17367408163110736} a^{7} + \frac{520854899595970025}{7624292183605613104} a^{6} - \frac{989333302653690435}{7624292183605613104} a^{5} + \frac{901592247251076131}{1906073045901403276} a^{4} + \frac{2790117964231238489}{7624292183605613104} a^{3} + \frac{2261243989107171171}{7624292183605613104} a^{2} - \frac{122397617917474477}{476518261475350819} a - \frac{2686635509483961255}{7624292183605613104}$
Class group and class number
Trivial group, which has order $1$ (assuming GRH)
Unit group
| Rank: | $11$ | magma: UnitRank(K);
sage: UK.rank()
gp: K.fu
| |
| Torsion generator: | \( -1 \) (order $2$) | magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
sage: UK.torsion_generator()
gp: K.tu[2]
| |
| Fundamental units: | Units are too long to display, but can be downloaded with other data for this field from 'Stored data to gp' link to the right (assuming GRH) | magma: [K!f(g): g in Generators(UK)];
sage: UK.fundamental_units()
gp: K.fu
| |
| Regulator: | \( 208707.57778 \) (assuming GRH) | magma: Regulator(K);
sage: K.regulator()
gp: K.reg
|
Galois group
| A solvable group of order 81920 |
| The 332 conjugacy class representatives for t20n747 are not computed |
| Character table for t20n747 is not computed |
Intermediate fields
| \(\Q(\zeta_{11})^+\), 10.6.51660490321.1 |
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Sibling fields
| Degree 20 siblings: | data not computed |
Frobenius cycle types
| $p$ | 2 | 3 | 5 | 7 | 11 | 13 | 17 | 19 | 23 | 29 | 31 | 37 | 41 | 43 | 47 | 53 | 59 |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Cycle type | R | ${\href{/LocalNumberField/3.5.0.1}{5} }^{4}$ | ${\href{/LocalNumberField/5.5.0.1}{5} }^{4}$ | $20$ | R | $20$ | $20$ | $20$ | ${\href{/LocalNumberField/23.4.0.1}{4} }^{2}{,}\,{\href{/LocalNumberField/23.2.0.1}{2} }^{5}{,}\,{\href{/LocalNumberField/23.1.0.1}{1} }^{2}$ | ${\href{/LocalNumberField/29.10.0.1}{10} }^{2}$ | $20$ | $20$ | ${\href{/LocalNumberField/41.10.0.1}{10} }^{2}$ | ${\href{/LocalNumberField/43.4.0.1}{4} }{,}\,{\href{/LocalNumberField/43.2.0.1}{2} }^{8}$ | ${\href{/LocalNumberField/47.5.0.1}{5} }^{4}$ | ${\href{/LocalNumberField/53.10.0.1}{10} }^{2}$ | ${\href{/LocalNumberField/59.5.0.1}{5} }^{4}$ |
In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
| $p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
|---|---|---|---|---|---|---|---|
| $2$ | 2.10.10.6 | $x^{10} - 5 x^{8} - 18 x^{6} - 46 x^{4} + 49 x^{2} - 13$ | $2$ | $5$ | $10$ | $C_2 \times (C_2^4 : C_5)$ | $[2, 2, 2, 2]^{10}$ |
| 2.10.0.1 | $x^{10} - x^{3} + 1$ | $1$ | $10$ | $0$ | $C_{10}$ | $[\ ]^{10}$ | |
| 11 | Data not computed | ||||||
| 241 | Data not computed | ||||||