Normalized defining polynomial
\( x^{20} - 10 x^{19} + 44 x^{18} - 109 x^{17} + 148 x^{16} - 38 x^{15} - 316 x^{14} + 937 x^{13} - 1784 x^{12} + 2717 x^{11} - 3388 x^{10} + 3494 x^{9} - 3097 x^{8} + 2450 x^{7} - 1666 x^{6} + 786 x^{5} - 32 x^{4} - 297 x^{3} + 210 x^{2} - 30 x - 43 \)
Invariants
| Degree: | $20$ | magma: Degree(K);
sage: K.degree()
gp: poldegree(K.pol)
| |
| Signature: | $[4, 8]$ | magma: Signature(K);
sage: K.signature()
gp: K.sign
| |
| Discriminant: | \(658618684118710741619590144=2^{10}\cdot 11^{16}\cdot 241^{3}\) | magma: Discriminant(Integers(K));
sage: K.disc()
gp: K.disc
| |
| Root discriminant: | $21.92$ | magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
sage: (K.disc().abs())^(1./K.degree())
gp: abs(K.disc)^(1/poldegree(K.pol))
| |
| Ramified primes: | $2, 11, 241$ | magma: PrimeDivisors(Discriminant(Integers(K)));
sage: K.disc().support()
gp: factor(abs(K.disc))[,1]~
| |
| This field is not Galois over $\Q$. | |||
| This is not a CM field. | |||
Integral basis (with respect to field generator \(a\))
$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $a^{6}$, $a^{7}$, $a^{8}$, $a^{9}$, $a^{10}$, $a^{11}$, $a^{12}$, $a^{13}$, $a^{14}$, $a^{15}$, $a^{16}$, $a^{17}$, $a^{18}$, $\frac{1}{4188092819868765616210601} a^{19} + \frac{1881076022333485099676130}{4188092819868765616210601} a^{18} + \frac{1852648731534103396285779}{4188092819868765616210601} a^{17} - \frac{991789169469754039027541}{4188092819868765616210601} a^{16} + \frac{928845304555643882998745}{4188092819868765616210601} a^{15} + \frac{1029533618411281092098004}{4188092819868765616210601} a^{14} + \frac{236989125917652715336494}{4188092819868765616210601} a^{13} + \frac{640942306823805556857176}{4188092819868765616210601} a^{12} + \frac{1397631728328808634714604}{4188092819868765616210601} a^{11} + \frac{111383551651622557487630}{4188092819868765616210601} a^{10} + \frac{21995784308230001662398}{4188092819868765616210601} a^{9} + \frac{293229666104138030924705}{4188092819868765616210601} a^{8} + \frac{726512028941106215801415}{4188092819868765616210601} a^{7} - \frac{654938745280524937836937}{4188092819868765616210601} a^{6} - \frac{104113084460143362615529}{4188092819868765616210601} a^{5} - \frac{1579076704130101328366662}{4188092819868765616210601} a^{4} - \frac{512799633903911632809712}{4188092819868765616210601} a^{3} + \frac{744006927146556206337284}{4188092819868765616210601} a^{2} - \frac{8156536377624550673887}{62508848057742770391203} a + \frac{1668098332948992291514876}{4188092819868765616210601}$
Class group and class number
Trivial group, which has order $1$ (assuming GRH)
Unit group
| Rank: | $11$ | magma: UnitRank(K);
sage: UK.rank()
gp: K.fu
| |
| Torsion generator: | \( -1 \) (order $2$) | magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
sage: UK.torsion_generator()
gp: K.tu[2]
| |
| Fundamental units: | Units are too long to display, but can be downloaded with other data for this field from 'Stored data to gp' link to the right (assuming GRH) | magma: [K!f(g): g in Generators(UK)];
sage: UK.fundamental_units()
gp: K.fu
| |
| Regulator: | \( 245400.181357 \) (assuming GRH) | magma: Regulator(K);
sage: K.regulator()
gp: K.reg
|
Galois group
| A solvable group of order 81920 |
| The 332 conjugacy class representatives for t20n747 are not computed |
| Character table for t20n747 is not computed |
Intermediate fields
| \(\Q(\zeta_{11})^+\), 10.6.51660490321.1 |
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Sibling fields
| Degree 20 siblings: | data not computed |
Frobenius cycle types
| $p$ | 2 | 3 | 5 | 7 | 11 | 13 | 17 | 19 | 23 | 29 | 31 | 37 | 41 | 43 | 47 | 53 | 59 |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Cycle type | R | ${\href{/LocalNumberField/3.5.0.1}{5} }^{4}$ | ${\href{/LocalNumberField/5.5.0.1}{5} }^{4}$ | $20$ | R | $20$ | $20$ | $20$ | ${\href{/LocalNumberField/23.4.0.1}{4} }^{2}{,}\,{\href{/LocalNumberField/23.2.0.1}{2} }^{3}{,}\,{\href{/LocalNumberField/23.1.0.1}{1} }^{6}$ | ${\href{/LocalNumberField/29.10.0.1}{10} }^{2}$ | $20$ | $20$ | ${\href{/LocalNumberField/41.10.0.1}{10} }^{2}$ | ${\href{/LocalNumberField/43.4.0.1}{4} }{,}\,{\href{/LocalNumberField/43.2.0.1}{2} }^{6}{,}\,{\href{/LocalNumberField/43.1.0.1}{1} }^{4}$ | ${\href{/LocalNumberField/47.5.0.1}{5} }^{4}$ | ${\href{/LocalNumberField/53.10.0.1}{10} }^{2}$ | ${\href{/LocalNumberField/59.5.0.1}{5} }^{4}$ |
In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
| $p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
|---|---|---|---|---|---|---|---|
| $2$ | 2.10.0.1 | $x^{10} - x^{3} + 1$ | $1$ | $10$ | $0$ | $C_{10}$ | $[\ ]^{10}$ |
| 2.10.10.6 | $x^{10} - 5 x^{8} - 18 x^{6} - 46 x^{4} + 49 x^{2} - 13$ | $2$ | $5$ | $10$ | $C_2 \times (C_2^4 : C_5)$ | $[2, 2, 2, 2]^{10}$ | |
| 11 | Data not computed | ||||||
| 241 | Data not computed | ||||||