Normalized defining polynomial
\( x^{20} - 8 x^{19} + 12 x^{18} + 66 x^{17} - 468 x^{16} + 1834 x^{15} - 5296 x^{14} + 12292 x^{13} - 23702 x^{12} + 36028 x^{11} - 41810 x^{10} + 25800 x^{9} + 48952 x^{8} - 186004 x^{7} + 363896 x^{6} - 630084 x^{5} + 821652 x^{4} - 761240 x^{3} + 716304 x^{2} - 516048 x + 154804 \)
Invariants
| Degree: | $20$ | magma: Degree(K);
sage: K.degree()
gp: poldegree(K.pol)
| |
| Signature: | $[4, 8]$ | magma: Signature(K);
sage: K.signature()
gp: K.sign
| |
| Discriminant: | \(6584630745307392888012800000000000=2^{28}\cdot 5^{11}\cdot 3469^{5}\) | magma: Discriminant(Integers(K));
sage: K.disc()
gp: K.disc
| |
| Root discriminant: | $49.08$ | magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
sage: (K.disc().abs())^(1./K.degree())
gp: abs(K.disc)^(1/poldegree(K.pol))
| |
| Ramified primes: | $2, 5, 3469$ | magma: PrimeDivisors(Discriminant(Integers(K)));
sage: K.disc().support()
gp: factor(abs(K.disc))[,1]~
| |
| This field is not Galois over $\Q$. | |||
| This is not a CM field. | |||
Integral basis (with respect to field generator \(a\))
$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $a^{6}$, $a^{7}$, $a^{8}$, $a^{9}$, $\frac{1}{2} a^{10}$, $\frac{1}{2} a^{11}$, $\frac{1}{2} a^{12}$, $\frac{1}{2} a^{13}$, $\frac{1}{2} a^{14}$, $\frac{1}{2} a^{15}$, $\frac{1}{2} a^{16}$, $\frac{1}{2} a^{17}$, $\frac{1}{2} a^{18}$, $\frac{1}{3238886886858208744987830969405613824893211292692562} a^{19} - \frac{557286470091871730956555673124035013651130657117811}{3238886886858208744987830969405613824893211292692562} a^{18} - \frac{493458103510286689250668985306902750588752718631583}{3238886886858208744987830969405613824893211292692562} a^{17} + \frac{785050944663620311217087245455429989522015315804793}{3238886886858208744987830969405613824893211292692562} a^{16} + \frac{20761545185391269786559425263252717933327397072199}{249145145142939134229833151492739524991785484053274} a^{15} + \frac{151894935549410724153116331121798799414018255367564}{1619443443429104372493915484702806912446605646346281} a^{14} + \frac{123653566199951823929935644797665286569181164059093}{1619443443429104372493915484702806912446605646346281} a^{13} + \frac{218848643396898022707315935806503132019010155922709}{1619443443429104372493915484702806912446605646346281} a^{12} + \frac{351371956859079170892736660277602937318233994866673}{3238886886858208744987830969405613824893211292692562} a^{11} - \frac{386652667739754049193898080283107136340176306171175}{3238886886858208744987830969405613824893211292692562} a^{10} - \frac{688757503464697056764071622214827273470359579044365}{1619443443429104372493915484702806912446605646346281} a^{9} + \frac{313474901634960444453806514441385406410360874046118}{1619443443429104372493915484702806912446605646346281} a^{8} + \frac{179850695963890383820759205248353550095581443700389}{1619443443429104372493915484702806912446605646346281} a^{7} + \frac{30155192511360781733101899422138693908730880658303}{124572572571469567114916575746369762495892742026637} a^{6} - \frac{30852944100454438462259726782790626724868699566542}{124572572571469567114916575746369762495892742026637} a^{5} - \frac{1067430160326290425085943694714700273949952760140}{124572572571469567114916575746369762495892742026637} a^{4} + \frac{19180358631040809404619163560392444921551779904553}{124572572571469567114916575746369762495892742026637} a^{3} - \frac{114718841300167736241069612771716504637203259928349}{1619443443429104372493915484702806912446605646346281} a^{2} - \frac{368178130158022092445400529913864976545714398007291}{1619443443429104372493915484702806912446605646346281} a + \frac{13527614127817982538115296795665647283234643100696}{124572572571469567114916575746369762495892742026637}$
Class group and class number
$C_{2}$, which has order $2$ (assuming GRH)
Unit group
| Rank: | $11$ | magma: UnitRank(K);
sage: UK.rank()
gp: K.fu
| |
| Torsion generator: | \( -1 \) (order $2$) | magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
sage: UK.torsion_generator()
gp: K.tu[2]
| |
| Fundamental units: | Units are too long to display, but can be downloaded with other data for this field from 'Stored data to gp' link to the right (assuming GRH) | magma: [K!f(g): g in Generators(UK)];
sage: UK.fundamental_units()
gp: K.fu
| |
| Regulator: | \( 646212999.983 \) (assuming GRH) | magma: Regulator(K);
sage: K.regulator()
gp: K.reg
|
Galois group
| A solvable group of order 102400 |
| The 130 conjugacy class representatives for t20n771 are not computed |
| Character table for t20n771 is not computed |
Intermediate fields
| \(\Q(\sqrt{5}) \), 10.10.9627168800000.1 |
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Sibling fields
Frobenius cycle types
| $p$ | 2 | 3 | 5 | 7 | 11 | 13 | 17 | 19 | 23 | 29 | 31 | 37 | 41 | 43 | 47 | 53 | 59 |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Cycle type | R | $20$ | R | $20$ | ${\href{/LocalNumberField/11.10.0.1}{10} }^{2}$ | ${\href{/LocalNumberField/13.8.0.1}{8} }^{2}{,}\,{\href{/LocalNumberField/13.2.0.1}{2} }^{2}$ | $20$ | ${\href{/LocalNumberField/19.5.0.1}{5} }^{4}$ | ${\href{/LocalNumberField/23.8.0.1}{8} }^{2}{,}\,{\href{/LocalNumberField/23.2.0.1}{2} }^{2}$ | ${\href{/LocalNumberField/29.10.0.1}{10} }{,}\,{\href{/LocalNumberField/29.2.0.1}{2} }^{4}{,}\,{\href{/LocalNumberField/29.1.0.1}{1} }^{2}$ | ${\href{/LocalNumberField/31.4.0.1}{4} }{,}\,{\href{/LocalNumberField/31.2.0.1}{2} }^{7}{,}\,{\href{/LocalNumberField/31.1.0.1}{1} }^{2}$ | $20$ | ${\href{/LocalNumberField/41.4.0.1}{4} }^{3}{,}\,{\href{/LocalNumberField/41.2.0.1}{2} }^{3}{,}\,{\href{/LocalNumberField/41.1.0.1}{1} }^{2}$ | ${\href{/LocalNumberField/43.8.0.1}{8} }^{2}{,}\,{\href{/LocalNumberField/43.2.0.1}{2} }^{2}$ | ${\href{/LocalNumberField/47.8.0.1}{8} }{,}\,{\href{/LocalNumberField/47.4.0.1}{4} }^{3}$ | $20$ | ${\href{/LocalNumberField/59.5.0.1}{5} }^{2}{,}\,{\href{/LocalNumberField/59.4.0.1}{4} }{,}\,{\href{/LocalNumberField/59.2.0.1}{2} }^{2}{,}\,{\href{/LocalNumberField/59.1.0.1}{1} }^{2}$ |
In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
| $p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
|---|---|---|---|---|---|---|---|
| 2 | Data not computed | ||||||
| $5$ | 5.4.2.1 | $x^{4} + 15 x^{2} + 100$ | $2$ | $2$ | $2$ | $C_2^2$ | $[\ ]_{2}^{2}$ |
| 5.4.3.2 | $x^{4} - 20$ | $4$ | $1$ | $3$ | $C_4$ | $[\ ]_{4}$ | |
| 5.4.2.1 | $x^{4} + 15 x^{2} + 100$ | $2$ | $2$ | $2$ | $C_2^2$ | $[\ ]_{2}^{2}$ | |
| 5.8.4.1 | $x^{8} + 10 x^{6} + 125 x^{4} + 2500$ | $2$ | $4$ | $4$ | $C_4\times C_2$ | $[\ ]_{2}^{4}$ | |
| 3469 | Data not computed | ||||||