Normalized defining polynomial
\( x^{20} - 2 x^{19} + 12 x^{18} - 60 x^{17} + 130 x^{16} - 502 x^{15} + 1414 x^{14} - 4464 x^{13} + 11592 x^{12} - 23992 x^{11} + 62318 x^{10} - 111748 x^{9} + 191596 x^{8} - 416468 x^{7} + 663196 x^{6} - 682180 x^{5} + 424256 x^{4} - 76360 x^{3} - 65940 x^{2} + 55560 x - 15380 \)
Invariants
| Degree: | $20$ | magma: Degree(K);
sage: K.degree()
gp: poldegree(K.pol)
| |
| Signature: | $[4, 8]$ | magma: Signature(K);
sage: K.signature()
gp: K.sign
| |
| Discriminant: | \(6584630745307392888012800000000000=2^{28}\cdot 5^{11}\cdot 3469^{5}\) | magma: Discriminant(Integers(K));
sage: K.disc()
gp: K.disc
| |
| Root discriminant: | $49.08$ | magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
sage: (K.disc().abs())^(1./K.degree())
gp: abs(K.disc)^(1/poldegree(K.pol))
| |
| Ramified primes: | $2, 5, 3469$ | magma: PrimeDivisors(Discriminant(Integers(K)));
sage: K.disc().support()
gp: factor(abs(K.disc))[,1]~
| |
| This field is not Galois over $\Q$. | |||
| This is not a CM field. | |||
Integral basis (with respect to field generator \(a\))
$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $a^{6}$, $a^{7}$, $a^{8}$, $a^{9}$, $\frac{1}{2} a^{10}$, $\frac{1}{2} a^{11}$, $\frac{1}{2} a^{12}$, $\frac{1}{2} a^{13}$, $\frac{1}{2} a^{14}$, $\frac{1}{2} a^{15}$, $\frac{1}{2} a^{16}$, $\frac{1}{2} a^{17}$, $\frac{1}{2} a^{18}$, $\frac{1}{2205928699690524666780232578692937554554161988675872842} a^{19} - \frac{311617223111364879121328193665362490860023137455212593}{2205928699690524666780232578692937554554161988675872842} a^{18} + \frac{237976501228341771802373993509587479605072206320625825}{1102964349845262333390116289346468777277080994337936421} a^{17} + \frac{477901924723394114643115799495569094175697327750784415}{2205928699690524666780232578692937554554161988675872842} a^{16} - \frac{132274631323984414866113644065483257580398919180447153}{2205928699690524666780232578692937554554161988675872842} a^{15} - \frac{297895084239252439082185487997599709594236368593861491}{2205928699690524666780232578692937554554161988675872842} a^{14} + \frac{240300551524361957655995506891083767439302581236096807}{2205928699690524666780232578692937554554161988675872842} a^{13} + \frac{192028345683460663950016823834702611288304890094822757}{1102964349845262333390116289346468777277080994337936421} a^{12} + \frac{164247100088874492045084594771878286925224067418384399}{1102964349845262333390116289346468777277080994337936421} a^{11} - \frac{39246764819825467639443347388683469931444537879921464}{1102964349845262333390116289346468777277080994337936421} a^{10} + \frac{42679631196897272568668827409471254640999863294785324}{1102964349845262333390116289346468777277080994337936421} a^{9} - \frac{141245713950781936784008998790204408701992903908494972}{1102964349845262333390116289346468777277080994337936421} a^{8} + \frac{421462944667153773026805544194653878652678867304774996}{1102964349845262333390116289346468777277080994337936421} a^{7} + \frac{204240118398241436528685499967161114274940214132540442}{1102964349845262333390116289346468777277080994337936421} a^{6} + \frac{14976659816988321541878170743686389139460106894925670}{35579495156298784948068267398273186363776806268965691} a^{5} - \frac{32163905949220207912310108957783581549208806347009877}{1102964349845262333390116289346468777277080994337936421} a^{4} + \frac{482931346882546312138220137492588715619791187114013419}{1102964349845262333390116289346468777277080994337936421} a^{3} + \frac{394221957526322226147769338671446140622340710803531827}{1102964349845262333390116289346468777277080994337936421} a^{2} - \frac{375830489595551246294947928238898255237384828383612896}{1102964349845262333390116289346468777277080994337936421} a + \frac{64701562379854394728844027294886463630386231847075813}{1102964349845262333390116289346468777277080994337936421}$
Class group and class number
$C_{2}$, which has order $2$ (assuming GRH)
Unit group
| Rank: | $11$ | magma: UnitRank(K);
sage: UK.rank()
gp: K.fu
| |
| Torsion generator: | \( -1 \) (order $2$) | magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
sage: UK.torsion_generator()
gp: K.tu[2]
| |
| Fundamental units: | Units are too long to display, but can be downloaded with other data for this field from 'Stored data to gp' link to the right (assuming GRH) | magma: [K!f(g): g in Generators(UK)];
sage: UK.fundamental_units()
gp: K.fu
| |
| Regulator: | \( 591619411.361 \) (assuming GRH) | magma: Regulator(K);
sage: K.regulator()
gp: K.reg
|
Galois group
| A solvable group of order 102400 |
| The 130 conjugacy class representatives for t20n771 are not computed |
| Character table for t20n771 is not computed |
Intermediate fields
| \(\Q(\sqrt{5}) \), 10.10.9627168800000.1 |
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Sibling fields
Frobenius cycle types
| $p$ | 2 | 3 | 5 | 7 | 11 | 13 | 17 | 19 | 23 | 29 | 31 | 37 | 41 | 43 | 47 | 53 | 59 |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Cycle type | R | $20$ | R | $20$ | ${\href{/LocalNumberField/11.10.0.1}{10} }^{2}$ | ${\href{/LocalNumberField/13.8.0.1}{8} }{,}\,{\href{/LocalNumberField/13.4.0.1}{4} }^{3}$ | $20$ | ${\href{/LocalNumberField/19.5.0.1}{5} }^{4}$ | ${\href{/LocalNumberField/23.8.0.1}{8} }^{2}{,}\,{\href{/LocalNumberField/23.2.0.1}{2} }^{2}$ | ${\href{/LocalNumberField/29.10.0.1}{10} }{,}\,{\href{/LocalNumberField/29.2.0.1}{2} }^{4}{,}\,{\href{/LocalNumberField/29.1.0.1}{1} }^{2}$ | ${\href{/LocalNumberField/31.2.0.1}{2} }^{8}{,}\,{\href{/LocalNumberField/31.1.0.1}{1} }^{4}$ | $20$ | ${\href{/LocalNumberField/41.4.0.1}{4} }{,}\,{\href{/LocalNumberField/41.2.0.1}{2} }^{7}{,}\,{\href{/LocalNumberField/41.1.0.1}{1} }^{2}$ | ${\href{/LocalNumberField/43.4.0.1}{4} }^{4}{,}\,{\href{/LocalNumberField/43.2.0.1}{2} }^{2}$ | ${\href{/LocalNumberField/47.8.0.1}{8} }^{2}{,}\,{\href{/LocalNumberField/47.2.0.1}{2} }^{2}$ | $20$ | ${\href{/LocalNumberField/59.5.0.1}{5} }^{2}{,}\,{\href{/LocalNumberField/59.4.0.1}{4} }{,}\,{\href{/LocalNumberField/59.2.0.1}{2} }^{2}{,}\,{\href{/LocalNumberField/59.1.0.1}{1} }^{2}$ |
In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
| $p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
|---|---|---|---|---|---|---|---|
| 2 | Data not computed | ||||||
| $5$ | 5.4.3.1 | $x^{4} - 5$ | $4$ | $1$ | $3$ | $C_4$ | $[\ ]_{4}$ |
| 5.8.4.1 | $x^{8} + 10 x^{6} + 125 x^{4} + 2500$ | $2$ | $4$ | $4$ | $C_4\times C_2$ | $[\ ]_{2}^{4}$ | |
| 5.8.4.1 | $x^{8} + 10 x^{6} + 125 x^{4} + 2500$ | $2$ | $4$ | $4$ | $C_4\times C_2$ | $[\ ]_{2}^{4}$ | |
| 3469 | Data not computed | ||||||