Normalized defining polynomial
\( x^{20} - 65 x^{18} + 2010 x^{16} - 4 x^{15} - 38620 x^{14} - 170 x^{13} + 507405 x^{12} + 6210 x^{11} - 4761951 x^{10} - 83460 x^{9} + 32453600 x^{8} + 545030 x^{7} - 159124680 x^{6} - 704030 x^{5} + 536314500 x^{4} - 10809480 x^{3} - 1110770180 x^{2} + 42769300 x + 1055258980 \)
Invariants
| Degree: | $20$ | magma: Degree(K);
sage: K.degree()
gp: poldegree(K.pol)
| |
| Signature: | $[4, 8]$ | magma: Signature(K);
sage: K.signature()
gp: K.sign
| |
| Discriminant: | \(65735505203156406250000000000000000=2^{16}\cdot 5^{22}\cdot 29^{10}\) | magma: Discriminant(Integers(K));
sage: K.disc()
gp: K.disc
| |
| Root discriminant: | $55.07$ | magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
sage: (K.disc().abs())^(1./K.degree())
gp: abs(K.disc)^(1/poldegree(K.pol))
| |
| Ramified primes: | $2, 5, 29$ | magma: PrimeDivisors(Discriminant(Integers(K)));
sage: K.disc().support()
gp: factor(abs(K.disc))[,1]~
| |
| This field is not Galois over $\Q$. | |||
| This is not a CM field. | |||
Integral basis (with respect to field generator \(a\))
$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $a^{6}$, $a^{7}$, $a^{8}$, $a^{9}$, $\frac{1}{2} a^{10} - \frac{1}{2} a^{9} - \frac{1}{2} a^{6} - \frac{1}{2} a^{5}$, $\frac{1}{2} a^{11} - \frac{1}{2} a^{9} - \frac{1}{2} a^{7} - \frac{1}{2} a^{5}$, $\frac{1}{2} a^{12} - \frac{1}{2} a^{9} - \frac{1}{2} a^{8} - \frac{1}{2} a^{5}$, $\frac{1}{2} a^{13} - \frac{1}{2} a^{5}$, $\frac{1}{2} a^{14} - \frac{1}{2} a^{6}$, $\frac{1}{2} a^{15} - \frac{1}{2} a^{7}$, $\frac{1}{2} a^{16} - \frac{1}{2} a^{8}$, $\frac{1}{2} a^{17} - \frac{1}{2} a^{9}$, $\frac{1}{14} a^{18} - \frac{3}{14} a^{17} - \frac{1}{7} a^{16} - \frac{1}{7} a^{15} - \frac{3}{14} a^{14} + \frac{1}{7} a^{13} - \frac{1}{14} a^{12} - \frac{3}{14} a^{11} - \frac{5}{14} a^{8} - \frac{5}{14} a^{7} - \frac{3}{7} a^{6} + \frac{3}{14} a^{5} + \frac{1}{7} a^{4} + \frac{2}{7} a^{3} + \frac{3}{7} a^{2} + \frac{3}{7} a - \frac{2}{7}$, $\frac{1}{102719877955710068789761410291854334460158427914295593046689967014} a^{19} - \frac{110090507053862597851100014155528831390691315130108528304519371}{102719877955710068789761410291854334460158427914295593046689967014} a^{18} - \frac{13872573975360280326415545805001478357876014428934890688838138733}{102719877955710068789761410291854334460158427914295593046689967014} a^{17} - \frac{24607810659689778004337459658588207301375351335503797835245499239}{102719877955710068789761410291854334460158427914295593046689967014} a^{16} + \frac{93115371334771818875493740990855934460702300048421159646774443}{14674268279387152684251630041693476351451203987756513292384281002} a^{15} + \frac{1496799816620421094491877373762135861003101107519538606142122760}{51359938977855034394880705145927167230079213957147796523344983507} a^{14} + \frac{4766538410797455225219374352716113494617170193598734336272109077}{34239959318570022929920470097284778153386142638098531015563322338} a^{13} + \frac{20699059060994758477237701892636843948299125652639736504970956405}{102719877955710068789761410291854334460158427914295593046689967014} a^{12} - \frac{13036564868740606977588832006112740694828021469112047897058100927}{102719877955710068789761410291854334460158427914295593046689967014} a^{11} - \frac{947903191609549699851796973065991704915517222511045971737976110}{7337134139693576342125815020846738175725601993878256646192140501} a^{10} - \frac{21018180551467633426027496822674245879113566033550419089021238925}{102719877955710068789761410291854334460158427914295593046689967014} a^{9} - \frac{3698218052197372429828637693062536841806554278939747485695596429}{51359938977855034394880705145927167230079213957147796523344983507} a^{8} + \frac{9494499257576817842083394110280932155166414278246027699521748747}{34239959318570022929920470097284778153386142638098531015563322338} a^{7} - \frac{35016226000340090277816396319324157053139587946928500471543265847}{102719877955710068789761410291854334460158427914295593046689967014} a^{6} + \frac{40324313666705954415689880383197348837129671742921248453393210515}{102719877955710068789761410291854334460158427914295593046689967014} a^{5} - \frac{5704587525170076545933447641291396262309345504716613428874441385}{17119979659285011464960235048642389076693071319049265507781661169} a^{4} - \frac{43705649472202288771472545362741557757702265300579463833990769}{2445711379897858780708605006948912725241867331292752215397380167} a^{3} - \frac{13121676709169190764890915959943185329050934404554084437784877}{462702152953648958512438785098442948018731657271601770480585437} a^{2} - \frac{13949739945379864821356594380231405617118220444902965846757890583}{51359938977855034394880705145927167230079213957147796523344983507} a - \frac{19658426845391760744659696327008743751087994825636843203909197065}{51359938977855034394880705145927167230079213957147796523344983507}$
Class group and class number
Not computed
Unit group
| Rank: | $11$ | magma: UnitRank(K);
sage: UK.rank()
gp: K.fu
| |
| Torsion generator: | \( -1 \) (order $2$) | magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
sage: UK.torsion_generator()
gp: K.tu[2]
| |
| Fundamental units: | Not computed | magma: [K!f(g): g in Generators(UK)];
sage: UK.fundamental_units()
gp: K.fu
| |
| Regulator: | Not computed | magma: Regulator(K);
sage: K.regulator()
gp: K.reg
|
Galois group
$C_2\times F_5$ (as 20T13):
| A solvable group of order 40 |
| The 10 conjugacy class representatives for $C_2\times F_5$ |
| Character table for $C_2\times F_5$ |
Intermediate fields
| \(\Q(\sqrt{145}) \), \(\Q(\sqrt{29}) \), \(\Q(\sqrt{5}) \), \(\Q(\sqrt{5}, \sqrt{29})\), 5.1.50000.1, 10.2.256389362500000000.1, 10.2.51277872500000000.1, 10.2.12500000000.1 |
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Sibling fields
| Galois closure: | data not computed |
| Degree 10 siblings: | data not computed |
| Degree 20 sibling: | data not computed |
Frobenius cycle types
| $p$ | 2 | 3 | 5 | 7 | 11 | 13 | 17 | 19 | 23 | 29 | 31 | 37 | 41 | 43 | 47 | 53 | 59 |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Cycle type | R | ${\href{/LocalNumberField/3.4.0.1}{4} }^{4}{,}\,{\href{/LocalNumberField/3.2.0.1}{2} }^{2}$ | R | ${\href{/LocalNumberField/7.4.0.1}{4} }^{4}{,}\,{\href{/LocalNumberField/7.2.0.1}{2} }^{2}$ | ${\href{/LocalNumberField/11.10.0.1}{10} }^{2}$ | ${\href{/LocalNumberField/13.4.0.1}{4} }^{4}{,}\,{\href{/LocalNumberField/13.2.0.1}{2} }^{2}$ | ${\href{/LocalNumberField/17.4.0.1}{4} }^{4}{,}\,{\href{/LocalNumberField/17.2.0.1}{2} }^{2}$ | ${\href{/LocalNumberField/19.2.0.1}{2} }^{10}$ | ${\href{/LocalNumberField/23.4.0.1}{4} }^{4}{,}\,{\href{/LocalNumberField/23.2.0.1}{2} }^{2}$ | R | ${\href{/LocalNumberField/31.10.0.1}{10} }^{2}$ | ${\href{/LocalNumberField/37.4.0.1}{4} }^{4}{,}\,{\href{/LocalNumberField/37.2.0.1}{2} }^{2}$ | ${\href{/LocalNumberField/41.10.0.1}{10} }^{2}$ | ${\href{/LocalNumberField/43.4.0.1}{4} }^{4}{,}\,{\href{/LocalNumberField/43.2.0.1}{2} }^{2}$ | ${\href{/LocalNumberField/47.4.0.1}{4} }^{4}{,}\,{\href{/LocalNumberField/47.2.0.1}{2} }^{2}$ | ${\href{/LocalNumberField/53.4.0.1}{4} }^{4}{,}\,{\href{/LocalNumberField/53.2.0.1}{2} }^{2}$ | ${\href{/LocalNumberField/59.2.0.1}{2} }^{8}{,}\,{\href{/LocalNumberField/59.1.0.1}{1} }^{4}$ |
In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
| $p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
|---|---|---|---|---|---|---|---|
| $2$ | 2.10.8.1 | $x^{10} - 2 x^{5} + 4$ | $5$ | $2$ | $8$ | $F_5$ | $[\ ]_{5}^{4}$ |
| 2.10.8.1 | $x^{10} - 2 x^{5} + 4$ | $5$ | $2$ | $8$ | $F_5$ | $[\ ]_{5}^{4}$ | |
| $5$ | 5.10.11.2 | $x^{10} + 5 x^{2} + 5$ | $10$ | $1$ | $11$ | $F_5$ | $[5/4]_{4}$ |
| 5.10.11.2 | $x^{10} + 5 x^{2} + 5$ | $10$ | $1$ | $11$ | $F_5$ | $[5/4]_{4}$ | |
| $29$ | 29.2.1.1 | $x^{2} - 29$ | $2$ | $1$ | $1$ | $C_2$ | $[\ ]_{2}$ |
| 29.2.1.1 | $x^{2} - 29$ | $2$ | $1$ | $1$ | $C_2$ | $[\ ]_{2}$ | |
| 29.4.2.1 | $x^{4} + 145 x^{2} + 7569$ | $2$ | $2$ | $2$ | $C_2^2$ | $[\ ]_{2}^{2}$ | |
| 29.4.2.1 | $x^{4} + 145 x^{2} + 7569$ | $2$ | $2$ | $2$ | $C_2^2$ | $[\ ]_{2}^{2}$ | |
| 29.4.2.1 | $x^{4} + 145 x^{2} + 7569$ | $2$ | $2$ | $2$ | $C_2^2$ | $[\ ]_{2}^{2}$ | |
| 29.4.2.1 | $x^{4} + 145 x^{2} + 7569$ | $2$ | $2$ | $2$ | $C_2^2$ | $[\ ]_{2}^{2}$ |