Normalized defining polynomial
\( x^{20} - 34 x^{18} + 380 x^{16} - 1190 x^{14} + 273 x^{12} + 10624 x^{10} - 325823 x^{8} + 458070 x^{6} + 4696740 x^{4} + 5861241 x^{2} + 19465109 \)
Invariants
| Degree: | $20$ | magma: Degree(K);
sage: K.degree()
gp: poldegree(K.pol)
| |
| Signature: | $[4, 8]$ | magma: Signature(K);
sage: K.signature()
gp: K.sign
| |
| Discriminant: | \(652297830366246329600000000000000=2^{20}\cdot 5^{14}\cdot 269^{7}\) | magma: Discriminant(Integers(K));
sage: K.disc()
gp: K.disc
| |
| Root discriminant: | $43.72$ | magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
sage: (K.disc().abs())^(1./K.degree())
gp: abs(K.disc)^(1/poldegree(K.pol))
| |
| Ramified primes: | $2, 5, 269$ | magma: PrimeDivisors(Discriminant(Integers(K)));
sage: K.disc().support()
gp: factor(abs(K.disc))[,1]~
| |
| This field is not Galois over $\Q$. | |||
| This is not a CM field. | |||
Integral basis (with respect to field generator \(a\))
$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $a^{6}$, $a^{7}$, $a^{8}$, $a^{9}$, $a^{10}$, $a^{11}$, $a^{12}$, $a^{13}$, $a^{14}$, $a^{15}$, $\frac{1}{807} a^{16} - \frac{101}{269} a^{14} + \frac{37}{269} a^{12} - \frac{383}{807} a^{10} + \frac{4}{807} a^{8} + \frac{134}{269} a^{6} - \frac{64}{807} a^{4} - \frac{37}{807} a^{2} - \frac{1}{3}$, $\frac{1}{807} a^{17} - \frac{101}{269} a^{15} + \frac{37}{269} a^{13} - \frac{383}{807} a^{11} + \frac{4}{807} a^{9} + \frac{134}{269} a^{7} - \frac{64}{807} a^{5} - \frac{37}{807} a^{3} - \frac{1}{3} a$, $\frac{1}{595625418500013105100985457389127} a^{18} - \frac{345076991781569845050331209230}{595625418500013105100985457389127} a^{16} - \frac{28521101060684343410592870920273}{198541806166671035033661819129709} a^{14} - \frac{193831284884710750398718731020078}{595625418500013105100985457389127} a^{12} - \frac{280869781903971821708419535978125}{595625418500013105100985457389127} a^{10} - \frac{218141199383271732407600373897239}{595625418500013105100985457389127} a^{8} - \frac{49424029440190636561686348360130}{595625418500013105100985457389127} a^{6} + \frac{133260748011220964563495566559744}{595625418500013105100985457389127} a^{4} + \frac{273269348676349982431270706897}{738073628872383029864913825761} a^{2} - \frac{3143776584096652450925705279}{8231304411216167619311306607}$, $\frac{1}{595625418500013105100985457389127} a^{19} - \frac{345076991781569845050331209230}{595625418500013105100985457389127} a^{17} - \frac{28521101060684343410592870920273}{198541806166671035033661819129709} a^{15} - \frac{193831284884710750398718731020078}{595625418500013105100985457389127} a^{13} - \frac{280869781903971821708419535978125}{595625418500013105100985457389127} a^{11} - \frac{218141199383271732407600373897239}{595625418500013105100985457389127} a^{9} - \frac{49424029440190636561686348360130}{595625418500013105100985457389127} a^{7} + \frac{133260748011220964563495566559744}{595625418500013105100985457389127} a^{5} + \frac{273269348676349982431270706897}{738073628872383029864913825761} a^{3} - \frac{3143776584096652450925705279}{8231304411216167619311306607} a$
Class group and class number
Trivial group, which has order $1$ (assuming GRH)
Unit group
| Rank: | $11$ | magma: UnitRank(K);
sage: UK.rank()
gp: K.fu
| |
| Torsion generator: | \( -1 \) (order $2$) | magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
sage: UK.torsion_generator()
gp: K.tu[2]
| |
| Fundamental units: | Units are too long to display, but can be downloaded with other data for this field from 'Stored data to gp' link to the right (assuming GRH) | magma: [K!f(g): g in Generators(UK)];
sage: UK.fundamental_units()
gp: K.fu
| |
| Regulator: | \( 262450568.91 \) (assuming GRH) | magma: Regulator(K);
sage: K.regulator()
gp: K.reg
|
Galois group
| A non-solvable group of order 7680 |
| The 48 conjugacy class representatives for t20n375 |
| Character table for t20n375 is not computed |
Intermediate fields
| \(\Q(\sqrt{5}) \), 5.1.33625.1, 10.2.5653203125.1 |
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Sibling fields
Frobenius cycle types
| $p$ | 2 | 3 | 5 | 7 | 11 | 13 | 17 | 19 | 23 | 29 | 31 | 37 | 41 | 43 | 47 | 53 | 59 |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Cycle type | R | ${\href{/LocalNumberField/3.12.0.1}{12} }{,}\,{\href{/LocalNumberField/3.4.0.1}{4} }^{2}$ | R | $20$ | ${\href{/LocalNumberField/11.5.0.1}{5} }^{4}$ | ${\href{/LocalNumberField/13.8.0.1}{8} }^{2}{,}\,{\href{/LocalNumberField/13.2.0.1}{2} }^{2}$ | $20$ | ${\href{/LocalNumberField/19.6.0.1}{6} }{,}\,{\href{/LocalNumberField/19.4.0.1}{4} }^{2}{,}\,{\href{/LocalNumberField/19.3.0.1}{3} }^{2}$ | ${\href{/LocalNumberField/23.4.0.1}{4} }^{4}{,}\,{\href{/LocalNumberField/23.2.0.1}{2} }^{2}$ | ${\href{/LocalNumberField/29.8.0.1}{8} }^{2}{,}\,{\href{/LocalNumberField/29.2.0.1}{2} }{,}\,{\href{/LocalNumberField/29.1.0.1}{1} }^{2}$ | ${\href{/LocalNumberField/31.8.0.1}{8} }^{2}{,}\,{\href{/LocalNumberField/31.2.0.1}{2} }{,}\,{\href{/LocalNumberField/31.1.0.1}{1} }^{2}$ | ${\href{/LocalNumberField/37.4.0.1}{4} }^{4}{,}\,{\href{/LocalNumberField/37.2.0.1}{2} }^{2}$ | ${\href{/LocalNumberField/41.5.0.1}{5} }^{4}$ | ${\href{/LocalNumberField/43.8.0.1}{8} }^{2}{,}\,{\href{/LocalNumberField/43.2.0.1}{2} }^{2}$ | ${\href{/LocalNumberField/47.4.0.1}{4} }^{4}{,}\,{\href{/LocalNumberField/47.2.0.1}{2} }^{2}$ | ${\href{/LocalNumberField/53.6.0.1}{6} }^{2}{,}\,{\href{/LocalNumberField/53.2.0.1}{2} }^{4}$ | ${\href{/LocalNumberField/59.6.0.1}{6} }{,}\,{\href{/LocalNumberField/59.4.0.1}{4} }^{2}{,}\,{\href{/LocalNumberField/59.3.0.1}{3} }^{2}$ |
In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
| $p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
|---|---|---|---|---|---|---|---|
| 2 | Data not computed | ||||||
| $5$ | 5.4.2.1 | $x^{4} + 15 x^{2} + 100$ | $2$ | $2$ | $2$ | $C_2^2$ | $[\ ]_{2}^{2}$ |
| 5.4.2.1 | $x^{4} + 15 x^{2} + 100$ | $2$ | $2$ | $2$ | $C_2^2$ | $[\ ]_{2}^{2}$ | |
| 5.12.10.1 | $x^{12} + 6 x^{11} + 27 x^{10} + 80 x^{9} + 195 x^{8} + 366 x^{7} + 571 x^{6} + 702 x^{5} + 1005 x^{4} + 1140 x^{3} + 357 x^{2} - 138 x + 44$ | $6$ | $2$ | $10$ | $D_6$ | $[\ ]_{6}^{2}$ | |
| 269 | Data not computed | ||||||