Normalized defining polynomial
\( x^{20} - 10 x^{18} - 5 x^{17} + 60 x^{16} + 27 x^{15} - 550 x^{14} + 1775 x^{13} - 2825 x^{12} + 1915 x^{11} - 1091 x^{10} + 660 x^{9} + 5450 x^{8} - 10960 x^{7} + 13235 x^{6} - 26017 x^{5} + 15375 x^{4} + 22070 x^{3} + 2340 x^{2} - 15650 x - 22319 \)
Invariants
| Degree: | $20$ | magma: Degree(K);
sage: K.degree()
gp: poldegree(K.pol)
| |
| Signature: | $[4, 8]$ | magma: Signature(K);
sage: K.signature()
gp: K.sign
| |
| Discriminant: | \(627030518482089626789093017578125=5^{23}\cdot 47^{10}\) | magma: Discriminant(Integers(K));
sage: K.disc()
gp: K.disc
| |
| Root discriminant: | $43.64$ | magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
sage: (K.disc().abs())^(1./K.degree())
gp: abs(K.disc)^(1/poldegree(K.pol))
| |
| Ramified primes: | $5, 47$ | magma: PrimeDivisors(Discriminant(Integers(K)));
sage: K.disc().support()
gp: factor(abs(K.disc))[,1]~
| |
| This field is not Galois over $\Q$. | |||
| This is not a CM field. | |||
Integral basis (with respect to field generator \(a\))
$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $a^{6}$, $a^{7}$, $a^{8}$, $a^{9}$, $a^{10}$, $a^{11}$, $a^{12}$, $a^{13}$, $a^{14}$, $a^{15}$, $\frac{1}{2} a^{16} - \frac{1}{2} a^{12} - \frac{1}{2} a^{11} - \frac{1}{2} a^{8} - \frac{1}{2} a^{6} - \frac{1}{2} a^{5} - \frac{1}{2} a^{4} - \frac{1}{2} a^{3} - \frac{1}{2} a^{2} - \frac{1}{2} a - \frac{1}{2}$, $\frac{1}{2} a^{17} - \frac{1}{2} a^{13} - \frac{1}{2} a^{12} - \frac{1}{2} a^{9} - \frac{1}{2} a^{7} - \frac{1}{2} a^{6} - \frac{1}{2} a^{5} - \frac{1}{2} a^{4} - \frac{1}{2} a^{3} - \frac{1}{2} a^{2} - \frac{1}{2} a$, $\frac{1}{94} a^{18} + \frac{4}{47} a^{17} - \frac{9}{94} a^{16} + \frac{15}{47} a^{15} + \frac{21}{94} a^{14} - \frac{3}{94} a^{13} - \frac{17}{94} a^{12} - \frac{5}{94} a^{11} + \frac{39}{94} a^{10} + \frac{2}{47} a^{9} - \frac{19}{47} a^{8} - \frac{37}{94} a^{7} + \frac{14}{47} a^{6} + \frac{4}{47} a^{5} + \frac{10}{47} a^{4} + \frac{3}{47} a^{3} + \frac{8}{47} a^{2} - \frac{35}{94} a - \frac{29}{94}$, $\frac{1}{3284744842349720740697482433574593549563046726} a^{19} - \frac{167348958655539816385405299415030652214731}{69888188135100441291435796459033905309852058} a^{18} - \frac{755712736901864853120089392798127021822166661}{3284744842349720740697482433574593549563046726} a^{17} - \frac{681224542431604568812133923307195869115562771}{3284744842349720740697482433574593549563046726} a^{16} + \frac{155171758739642092415455211816513299763311709}{3284744842349720740697482433574593549563046726} a^{15} - \frac{365192257933540085214070470211734067327832208}{1642372421174860370348741216787296774781523363} a^{14} + \frac{257572599650554524998524049553326019310503896}{1642372421174860370348741216787296774781523363} a^{13} - \frac{251188036392127000286085825018518224950076425}{1642372421174860370348741216787296774781523363} a^{12} - \frac{584919101334971734358143890188759440437507855}{1642372421174860370348741216787296774781523363} a^{11} - \frac{44166840566626182378436120062683870358247655}{3284744842349720740697482433574593549563046726} a^{10} + \frac{515883342366434270963312671283905037771151741}{1642372421174860370348741216787296774781523363} a^{9} + \frac{1431107911687317578749717546695280878813698125}{3284744842349720740697482433574593549563046726} a^{8} + \frac{312995298593810574678396016214221009313419667}{3284744842349720740697482433574593549563046726} a^{7} - \frac{342219159447133574380994133882017761268663578}{1642372421174860370348741216787296774781523363} a^{6} + \frac{367830732628826252024020789493988310731187364}{1642372421174860370348741216787296774781523363} a^{5} + \frac{739652043504582517512684441644007519028610266}{1642372421174860370348741216787296774781523363} a^{4} - \frac{180664097190135749232703503744429213562826297}{1642372421174860370348741216787296774781523363} a^{3} + \frac{1124519828101058270969000734543523265284269239}{3284744842349720740697482433574593549563046726} a^{2} - \frac{257090560036365255976821692249659479913066669}{1642372421174860370348741216787296774781523363} a - \frac{1108519000353005078885448066791238697163021363}{3284744842349720740697482433574593549563046726}$
Class group and class number
$C_{2}\times C_{4}$, which has order $8$ (assuming GRH)
Unit group
| Rank: | $11$ | magma: UnitRank(K);
sage: UK.rank()
gp: K.fu
| |
| Torsion generator: | \( -1 \) (order $2$) | magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
sage: UK.torsion_generator()
gp: K.tu[2]
| |
| Fundamental units: | Units are too long to display, but can be downloaded with other data for this field from 'Stored data to gp' link to the right (assuming GRH) | magma: [K!f(g): g in Generators(UK)];
sage: UK.fundamental_units()
gp: K.fu
| |
| Regulator: | \( 36093748.9714 \) (assuming GRH) | magma: Regulator(K);
sage: K.regulator()
gp: K.reg
|
Galois group
$C_2^4:C_5:C_4$ (as 20T88):
| A solvable group of order 320 |
| The 11 conjugacy class representatives for $C_2^4:C_5:C_4$ |
| Character table for $C_2^4:C_5:C_4$ |
Intermediate fields
| \(\Q(\sqrt{5}) \), 5.5.6903125.1, 10.10.238265673828125.1 |
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Sibling fields
| Degree 10 siblings: | data not computed |
| Degree 16 sibling: | data not computed |
| Degree 20 siblings: | data not computed |
| Degree 32 sibling: | data not computed |
| Degree 40 siblings: | data not computed |
Frobenius cycle types
| $p$ | 2 | 3 | 5 | 7 | 11 | 13 | 17 | 19 | 23 | 29 | 31 | 37 | 41 | 43 | 47 | 53 | 59 |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Cycle type | ${\href{/LocalNumberField/2.8.0.1}{8} }^{2}{,}\,{\href{/LocalNumberField/2.4.0.1}{4} }$ | ${\href{/LocalNumberField/3.8.0.1}{8} }^{2}{,}\,{\href{/LocalNumberField/3.4.0.1}{4} }$ | R | ${\href{/LocalNumberField/7.4.0.1}{4} }^{5}$ | ${\href{/LocalNumberField/11.4.0.1}{4} }^{2}{,}\,{\href{/LocalNumberField/11.2.0.1}{2} }^{4}{,}\,{\href{/LocalNumberField/11.1.0.1}{1} }^{4}$ | ${\href{/LocalNumberField/13.4.0.1}{4} }^{5}$ | ${\href{/LocalNumberField/17.4.0.1}{4} }^{5}$ | ${\href{/LocalNumberField/19.5.0.1}{5} }^{4}$ | ${\href{/LocalNumberField/23.8.0.1}{8} }^{2}{,}\,{\href{/LocalNumberField/23.4.0.1}{4} }$ | ${\href{/LocalNumberField/29.5.0.1}{5} }^{4}$ | ${\href{/LocalNumberField/31.4.0.1}{4} }^{4}{,}\,{\href{/LocalNumberField/31.2.0.1}{2} }^{2}$ | ${\href{/LocalNumberField/37.8.0.1}{8} }^{2}{,}\,{\href{/LocalNumberField/37.4.0.1}{4} }$ | ${\href{/LocalNumberField/41.4.0.1}{4} }^{4}{,}\,{\href{/LocalNumberField/41.2.0.1}{2} }^{2}$ | ${\href{/LocalNumberField/43.8.0.1}{8} }^{2}{,}\,{\href{/LocalNumberField/43.4.0.1}{4} }$ | R | ${\href{/LocalNumberField/53.4.0.1}{4} }^{5}$ | ${\href{/LocalNumberField/59.4.0.1}{4} }^{4}{,}\,{\href{/LocalNumberField/59.2.0.1}{2} }^{2}$ |
In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
| $p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
|---|---|---|---|---|---|---|---|
| 5 | Data not computed | ||||||
| $47$ | 47.4.2.2 | $x^{4} - 47 x^{2} + 28717$ | $2$ | $2$ | $2$ | $C_4$ | $[\ ]_{2}^{2}$ |
| 47.4.2.2 | $x^{4} - 47 x^{2} + 28717$ | $2$ | $2$ | $2$ | $C_4$ | $[\ ]_{2}^{2}$ | |
| 47.4.2.2 | $x^{4} - 47 x^{2} + 28717$ | $2$ | $2$ | $2$ | $C_4$ | $[\ ]_{2}^{2}$ | |
| 47.4.2.2 | $x^{4} - 47 x^{2} + 28717$ | $2$ | $2$ | $2$ | $C_4$ | $[\ ]_{2}^{2}$ | |
| 47.4.2.2 | $x^{4} - 47 x^{2} + 28717$ | $2$ | $2$ | $2$ | $C_4$ | $[\ ]_{2}^{2}$ | |